| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2}+1+\left (y^{2}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| \begin{align*}
\sin \left (x \right )+y^{\prime } y&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| \begin{align*}
x^{2}+1+\frac {y^{\prime }}{y}&=0 \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.873 |
|
| \begin{align*}
x \,{\mathrm e}^{x}+\left (y^{5}-1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.137 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.537 |
|
| \begin{align*}
y^{\prime }&=\frac {x \,{\mathrm e}^{x}}{2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.701 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} y-y}{1+y} \\
y \left (3\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.517 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.963 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.367 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.991 |
|
| \begin{align*}
y^{\prime }&=y x \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
22.035 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.379 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.323 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.600 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 x}{y x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.699 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 0.331 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x +\sqrt {y x}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.819 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x +\left (x y^{2}\right )^{{1}/{3}}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
104.149 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}+3 y^{2} x^{2}+y^{4}}{x^{3} y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.875 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
2.603 |
|
| \begin{align*}
y x +x^{2}-y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| \begin{align*}
y^{\prime }&=\frac {2+y \,{\mathrm e}^{y x}}{2 y-x \,{\mathrm e}^{y x}} \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✓ |
✓ |
✓ |
✗ |
23.582 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 x y}{x^{2}+1} \\
y \left (2\right ) &= -5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.313 |
|
| \begin{align*}
2 y x +x +\left (y+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.529 |
|
| \begin{align*}
y+2 x y^{3}+\left (1+3 y^{2} x^{2}+x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.753 |
|
| \begin{align*}
y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.082 |
|
| \begin{align*}
x \,{\mathrm e}^{y x}+y \,{\mathrm e}^{y x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
3 y^{2} x^{2}+\left (2 x^{3} y+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.562 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.290 |
|
| \begin{align*}
y \sin \left (x \right )+y \cos \left (x \right ) x +\left (x \sin \left (x \right )+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
16.170 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.357 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
y-x y^{2}+\left (y^{2} x^{2}+x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.679 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.326 |
|
| \begin{align*}
y^{\prime }&=2 y x -x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.516 |
|
| \begin{align*}
y^{\prime }&=\frac {-y+x y^{2}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.729 |
|
| \begin{align*}
y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.074 |
|
| \begin{align*}
y+1-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.666 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.474 |
|
| \begin{align*}
x^{2}+y+y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.062 |
|
| \begin{align*}
y+x^{3} y^{3}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
y+x^{4} y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
3 x^{2} y-x^{2}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
2 y x +y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.143 |
|
| \begin{align*}
y+3 y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.736 |
|
| \begin{align*}
2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.542 |
|
| \begin{align*}
x y^{2}+\left (y^{2} x^{2}+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
x y^{2}+x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.072 |
|
| \begin{align*}
y+x^{3}+x y^{2}-y^{\prime } x&=0 \\
\end{align*} | [[_homogeneous, ‘class D‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 2.902 |
|
| \begin{align*}
x^{3} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.387 |
|
| \begin{align*}
3 y^{2} x^{2}+\left (2 x^{3} y+y^{4} x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime }-2 y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.783 |
|
| \begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.384 |
|
| \begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.463 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.315 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.656 |
|
| \begin{align*}
y^{\prime }-7 y&={\mathrm e}^{x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| \begin{align*}
y^{\prime }-7 y&=14 x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.675 |
|
| \begin{align*}
y^{\prime }-7 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.572 |
|
| \begin{align*}
y^{\prime }+x^{2} y&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.531 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.040 |
|
| \begin{align*}
y^{\prime }+6 y x&=0 \\
y \left (\pi \right ) &= 5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x^{2}}&=\frac {1}{x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime }+2 y x&=2 x^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.829 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime }+y x&=6 x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=-x^{9} y^{5} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.238 |
|
| \begin{align*}
2 y^{\prime \prime } x +x^{2} y^{\prime }-y \sin \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.819 |
|
| \begin{align*}
y y^{\prime \prime \prime }+y^{\prime } x +y&=x^{2} \\
\end{align*} |
[[_3rd_order, _exact, _nonlinear]] |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| \begin{align*}
3 y^{\prime }+y x&={\mathrm e}^{-x^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (x +1\right ) y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.438 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.266 |
|
| \begin{align*}
y^{\prime \prime \prime }-y&=x \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.093 |
|
| \begin{align*}
y^{\prime }+5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+y^{\prime \prime } x -{\mathrm e}^{x} y^{\prime }+2 y&=x^{2}+x +1 \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
0.043 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x +y&=4 x y^{2} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.136 |
|
| \begin{align*}
y^{\prime }-2 y&=y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.561 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✗ |
✗ |
✗ |
88.207 |
|
| \begin{align*}
y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y&=5 \sin \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
0.039 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.725 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.034 |
|
| \begin{align*}
y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.670 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|