2.2.219 Problems 21801 to 21900

Table 2.451: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21801

\begin{align*} y^{\prime } y+x&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

10.701

21802

\begin{align*} r^{\prime }&=r \tan \left (t \right ) \\ r \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.134

21803

\begin{align*} {\mathrm e}^{x} \sec \left (y\right )+\left ({\mathrm e}^{x}+1\right ) \sec \left (y\right ) \tan \left (y\right ) y^{\prime }&=0 \\ y \left (3\right ) &= \frac {\pi }{3} \\ \end{align*}

[_separable]

1.036

21804

\begin{align*} \left (x -y\right ) y^{\prime }&=y-x \\ \end{align*}

[_quadrature]

0.224

21805

\begin{align*} y&=y^{\prime } x -\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

991.450

21806

\begin{align*} x^{3}-y^{3}+y^{2} y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

45.417

21807

\begin{align*} y^{\prime }&=\frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

118.658

21808

\begin{align*} 3 x^{2}+2 y x +4 y^{2}+\left (20 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

131.373

21809

\begin{align*} \left (x +y\right ) y^{\prime }&=y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

75.418

21810

\begin{align*} x^{2}+2 y x -2 y^{2}+\left (y^{2}+2 y x -2 x^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

86.238

21811

\begin{align*} a x -b y+\left (b x -a y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

81.242

21812

\begin{align*} 2 x^{2}+5 x y^{2}+\left (5 x^{2} y-2 y^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

82.885

21813

\begin{align*} a \,x^{2}+2 b x y+c y^{2}+\left (b \,x^{2}+2 c x y+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

194.913

21814

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

25.327

21815

\begin{align*} x^{2}+y \,{\mathrm e}^{2 y}+\left (2 y x +x \right ) {\mathrm e}^{2 y} y^{\prime }&=0 \\ \end{align*}

[_exact]

107.351

21816

\begin{align*} \sin \left (x \right )+\sin \left (y\right )+\left (x \cos \left (y\right )+\cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

84.870

21817

\begin{align*} 4 x -2 y+3+\left (5 y-2 x +7\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

68.536

21818

\begin{align*} 2 x \sin \left (y\right )+2 x +3 y \cos \left (x \right )+\left (\cos \left (y\right ) x^{2}+3 \sin \left (x \right )\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_exact]

102.067

21819

\begin{align*} y \,{\mathrm e}^{2 x}-3 x \,{\mathrm e}^{2 y}+\left (\frac {{\mathrm e}^{2 x}}{2}-3 x^{2} {\mathrm e}^{2 y}-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_exact]

106.050

21820

\begin{align*} -y+y^{\prime } x&=x^{2} y y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

38.705

21821

\begin{align*} x^{3} y^{\prime }-x^{2} y&=x^{5} y \\ \end{align*}

[_separable]

24.636

21822

\begin{align*} \left (y^{2}+x^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

111.341

21823

\begin{align*} 3 y+2 y^{\prime } x +4 x y^{2}+3 x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

91.640

21824

\begin{align*} -y+y^{\prime } x&=x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

697.357

21825

\begin{align*} y^{\prime } x +y&=3 x^{2} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_linear]

23.538

21826

\begin{align*} x^{2} y^{\prime }-y x&=x^{2}-y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

36.465

21827

\begin{align*} y&=\left (2 x^{2} y^{3}-x \right ) y^{\prime } \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

70.973

21828

\begin{align*} y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

18.024

21829

\begin{align*} y^{\prime }+y \sin \left (x \right )&=2 x \,{\mathrm e}^{\cos \left (x \right )} \\ \end{align*}

[_linear]

20.203

21830

\begin{align*} y x +x^{2} y^{\prime }&=8 \cos \left (x \right )^{2} x^{2} \\ \end{align*}

[_linear]

22.933

21831

\begin{align*} 2 y+y^{\prime }&=\sin \left (3 x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

17.069

21832

\begin{align*} 1-y^{\prime } x&=\ln \left (y\right ) y^{\prime } \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

32.661

21833

\begin{align*} 2-x -y+\left (x +y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

67.674

21834

\begin{align*} 2+3 x -5 y+7 y^{\prime }&=0 \\ \end{align*}

[[_linear, ‘class A‘]]

26.126

21835

\begin{align*} 4 x +3 y+2+\left (5 x +4 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

107.516

21836

\begin{align*} x -y-3+\left (3 x -3 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

69.504

21837

\begin{align*} 2 x -y-1+\left (3 x +2 y-5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

207.846

21838

\begin{align*} x y \left (y^{\prime } x +y\right )&=4 x^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

71.394

21839

\begin{align*} y^{3} \left (y^{\prime } y+x \right )&=\left (y^{2}+x^{2}\right )^{3} y^{\prime } \\ \end{align*}

[_rational]

96.524

21840

\begin{align*} \left (1+{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

94.017

21841

\begin{align*} y^{\prime } y+\tan \left (x \right ) y^{2}&=\cos \left (x \right )^{2} \\ \end{align*}

[_Bernoulli]

88.531

21842

\begin{align*} -y+y^{\prime } x&=y^{3} \\ \end{align*}

[_separable]

26.202

21843

\begin{align*} y^{\prime }+3 x^{2} y&=3 x^{2} \\ \end{align*}

[_separable]

4.454

21844

\begin{align*} 4 x^{2} y^{2} y^{\prime }-3 x y^{3}&=x^{2} y^{3}+2 x^{2} y^{\prime } \\ \end{align*}

[_separable]

53.454

21845

\begin{align*} \sin \left (x \right )+\cos \left (y\right )+\cos \left (x \right )-y^{\prime } \sin \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

45.778

21846

\begin{align*} y^{\prime } x +y&=y^{2} x^{3} \sin \left (x \right ) \\ \end{align*}

[_Bernoulli]

45.030

21847

\begin{align*} R q^{\prime }+\frac {q}{c}&=E \\ q \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

3.590

21848

\begin{align*} \left (y^{2} x^{2}-y x -2\right ) x y^{\prime }+y \left (y^{2} x^{2}-1\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.531

21849

\begin{align*} 3 x^{2}-2 y x +\left (4 y^{3}-x^{2}\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_exact, _rational]

46.958

21850

\begin{align*} 3 x^{2}+2 y x -2 y^{2}+\left (2 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

84.216

21851

\begin{align*} 2 x -y+1+\left (x -2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

123.100

21852

\begin{align*} 3 x +3 y-2+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

62.657

21853

\begin{align*} a x y-b +\left (c x y-d \right ) x y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

502.292

21854

\begin{align*} {y^{\prime }}^{2}-3&=0 \\ \end{align*}

[_quadrature]

0.457

21855

\begin{align*} {y^{\prime }}^{2}-4 y^{\prime }+2&=0 \\ \end{align*}

[_quadrature]

0.494

21856

\begin{align*} x y^{2} {y^{\prime }}^{2}+\left (x^{3}+x y^{2}-y^{3}\right ) y^{\prime }+x^{3}-y^{3}&=0 \\ \end{align*}

[_quadrature]

0.687

21857

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.545

21858

\begin{align*} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2}&=x +y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

21.301

21859

\begin{align*} 2 y a \,x^{3}-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3}&=0 \\ \end{align*}

[_separable]

29.809

21860

\begin{align*} y^{2}-2 x y^{\prime } y+x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

28.741

21861

\begin{align*} x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

47.353

21862

\begin{align*} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.867

21863

\begin{align*} 2 {y^{\prime }}^{2}+y^{\prime } y-y^{4}&=0 \\ \end{align*}

[_quadrature]

10.277

21864

\begin{align*} y&=4 x {y^{\prime }}^{2}+2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

21.903

21865

\begin{align*} \left (x^{2}-2 y x \right ) {y^{\prime }}^{2}-\left (3 x^{2}+2 y\right ) \left (x -2 y\right ) y^{\prime }+6 x y \left (x -2 y\right )&=0 \\ \end{align*}

[_quadrature]

0.327

21866

\begin{align*} {y^{\prime }}^{2}+y&=y^{\prime } x +1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.389

21867

\begin{align*} y^{\prime } y&=-x {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

0.233

21868

\begin{align*} \left (y-y^{\prime } x \right )^{2}&=y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

1.426

21869

\begin{align*} y-{y^{\prime }}^{2}&=0 \\ \end{align*}

[_quadrature]

1.936

21870

\begin{align*} x -x {y^{\prime }}^{2}&=0 \\ \end{align*}

[_quadrature]

0.416

21871

\begin{align*} {y^{\prime }}^{3}+y {y^{\prime }}^{2}-x^{2} y^{\prime }-x^{2} y&=0 \\ \end{align*}

[_quadrature]

1.036

21872

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

30.557

21873

\begin{align*} x {y^{\prime }}^{2}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.283

21874

\begin{align*} y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.301

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.158

21876

\begin{align*} 9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.428

21877

\begin{align*} 3 y^{\prime \prime }-4 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.646

21878

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.105

21879

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+3 y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.097

21880

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+5 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.110

21881

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+42 y^{\prime \prime }-104 y^{\prime }+169 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.117

21882

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=2 x^{2}-3 x -17 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.205

21883

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

21884

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

21885

\begin{align*} y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.545

21886

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

21887

\begin{align*} 4 y+y^{\prime \prime }&=4 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

21888

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }&=x^{3}+{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.219

21889

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.745

21890

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.221

21891

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.751

21892

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.188

21893

\begin{align*} x^{\prime }+x+y^{\prime }+y&=0 \\ x^{\prime }-y^{\prime }-y&=t \\ \end{align*}

system_of_ODEs

0.760

21894

\begin{align*} y^{\prime }-3 z&=5 \\ y-z^{\prime }-x&=3-2 t \\ z+x^{\prime }&=-1 \\ \end{align*}

system_of_ODEs

1.512

21895

\begin{align*} x^{\prime \prime }-x+y&={\mathrm e}^{t} \\ x^{\prime }+x-y^{\prime }-y&=3 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.079

21896

\begin{align*} x^{\prime }-2 x+y^{\prime }-2 y&=1 \\ y^{\prime }+z^{\prime }+z&=2 \\ 3 x+z^{\prime }+z&=3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.270

21897

\begin{align*} x^{\prime }+3 x-y&=0 \\ y^{\prime }+y-3 x&=0 \\ \end{align*}

system_of_ODEs

0.543

21898

\begin{align*} x^{\prime }-x-2 y&=0 \\ y^{\prime }-2 y-3 x&=0 \\ \end{align*}

system_of_ODEs

0.564

21899

\begin{align*} y^{\prime }+y-x^{\prime \prime }+x&={\mathrm e}^{t} \\ y^{\prime }-x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.082

21900

\begin{align*} 2 y^{\prime \prime \prime }+y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.061