| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\frac {-y+y^{\prime } x}{\sqrt {x^{2}-y^{2}}}&=y^{\prime } x \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
4.894 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.197 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
23.608 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.342 |
|
| \begin{align*}
-y+y^{\prime } x&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.050 |
|
| \begin{align*}
3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.760 |
|
| \begin{align*}
\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.046 |
|
| \begin{align*}
y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.674 |
|
| \begin{align*}
x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.126 |
|
| \begin{align*}
y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
39.985 |
|
| \begin{align*}
y^{\prime } x -y+2 x^{2} y-x^{3}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.011 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.100 |
|
| \begin{align*}
x +y^{\prime } y+y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.757 |
|
| \begin{align*}
y^{\prime } x -a y+b y^{2}&=c \,x^{2 a} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
4.734 |
|
| \begin{align*}
x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.466 |
|
| \begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 7.421 |
|
| \begin{align*}
y^{\prime }-x^{2} y&=x^{5} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.362 |
|
| \begin{align*}
\left (y-x \right )^{2} y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.942 |
|
| \begin{align*}
y^{\prime } x +y+{\mathrm e}^{x} x^{4} y^{4}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.638 |
|
| \begin{align*}
x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.586 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.640 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
38.407 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.376 |
|
| \begin{align*}
\left (4+2 x -y\right ) y^{\prime }+5+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}}&=\frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
3.869 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-y x&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.890 |
|
| \begin{align*}
x y^{2} \left (y^{\prime } x +3 y\right )-2 y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.145 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y&=\arctan \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| \begin{align*}
5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.443 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.670 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| \begin{align*}
\left (1-x \right ) y-x \left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.045 |
|
| \begin{align*}
3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (y^{\prime } y+x \right )&=\left (x^{2}+y^{2}+x \right ) \left (-y+y^{\prime } x \right ) \\
\end{align*} | [_rational] | ✗ | ✓ | ✓ | ✗ | 4.853 |
|
| \begin{align*}
2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.236 |
|
| \begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.016 |
|
| \begin{align*}
2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.148 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (y^{\prime } y+x \right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
4.551 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.590 |
|
| \begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.167 |
|
| \begin{align*}
y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✗ |
✗ |
✗ |
✗ |
3.075 |
|
| \begin{align*}
\left (2 \sqrt {y x}-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.059 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
\left (2 y^{\prime } x -y\right )^{2}&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
\left (x^{2}+1\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
2 y^{\prime } x -y+\ln \left (y^{\prime }\right )&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.132 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
y^{\prime }+2 y x&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 0.434 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.364 |
|
| \begin{align*}
x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
4.520 |
|
| \begin{align*}
a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
{y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.397 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.252 |
|
| \begin{align*}
4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 y^{\prime } x -1&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.313 |
|
| \begin{align*}
4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.773 |
|
| \begin{align*}
{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x}&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✗ |
✗ |
24.378 |
|
| \begin{align*}
x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.957 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
54.400 |
|
| \begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| \begin{align*}
a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
\left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
56.909 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=a^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime } y&=\left (-b +x \right ) {y^{\prime }}^{2}+a \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.515 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.650 |
|
| \begin{align*}
y&=\left (x +1\right ) {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right ) \left (y^{\prime } y+x \right )&=a^{2} y^{\prime } \\
\end{align*} |
[_rational] |
✓ |
✗ |
✓ |
✗ |
145.536 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.733 |
|
| \begin{align*}
\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.212 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 \left (y x +2 y^{\prime }\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.127 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {y {y^{\prime }}^{2}}{x^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.498 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=y^{2} x^{2}+x^{4} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
15.140 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.377 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 \left (y x -2\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.140 |
|
| \begin{align*}
8 \left (1+y^{\prime }\right )^{3}&=27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
32.235 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
4 y^{\prime \prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} | [[_3rd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.040 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
-y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.051 |
|
| \begin{align*}
y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.042 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.098 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{{\mathrm e}^{x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.382 |
|
| \begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.137 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.388 |
|