2.2.140 Problems 13901 to 14000

Table 2.293: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13901

\begin{align*} x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.236

13902

\begin{align*} x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.694

13903

\begin{align*} x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.815

13904

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (a -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.487

13905

\begin{align*} x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.564

13906

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.283

13907

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.035

13908

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n +m}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.932

13909

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.102

13910

\begin{align*} \left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.259

13911

\begin{align*} x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (-a +1\right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.301

13912

\begin{align*} x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

84.924

13913

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

90.798

13914

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

98.126

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.306

13916

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.669

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.615

13918

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.697

13919

\begin{align*} x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

157.368

13920

\begin{align*} \left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-n b +\beta \right ) x^{-2+n}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.385

13921

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.734

13922

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

73.459

13923

\begin{align*} 2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.152

13924

\begin{align*} \left (a \,x^{n}+b \right )^{m +1} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }-a n m \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.368

13925

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.156

13926

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}-b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.197

13927

\begin{align*} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.586

13928

\begin{align*} y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.785

13929

\begin{align*} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.562

13930

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.920

13931

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.972

13932

\begin{align*} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.352

13933

\begin{align*} y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.122

13934

\begin{align*} y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

13935

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.226

13936

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.154

13937

\begin{align*} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.597

13938

\begin{align*} y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.084

13939

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.628

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.171

13941

\begin{align*} y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.800

13942

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.647

13943

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.741

13944

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.079

13945

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.977

13946

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.881

13947

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.056

13948

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

13949

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.917

13950

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.122

13951

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.436

13952

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 \mu x}+c \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.059

13953

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.342

13954

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.118

13955

\begin{align*} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.994

13956

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.967

13957

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{x \left (\lambda +\mu \right )}+{\mathrm e}^{\lambda x} a c +{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.089

13958

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{x \left (\lambda +\mu \right )}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.533

13959

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x \left (\lambda +\mu \right )}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.731

13961

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.645

13962

\begin{align*} \left (a^{2} {\mathrm e}^{2 \lambda x}+b \right ) y^{\prime \prime }-b \lambda y^{\prime }-a^{2} \lambda ^{2} k^{2} {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

41.366

13963

\begin{align*} 2 \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.865

13964

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.733

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.426

13966

\begin{align*} \frac {2 y x +1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.991

13967

\begin{align*} \frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

35.716

13968

\begin{align*} \frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

28.990

13969

\begin{align*} y^{\prime } x +x +y&=0 \\ \end{align*}

[_linear]

4.372

13970

\begin{align*} 6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.400

13971

\begin{align*} \sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

8.740

13972

\begin{align*} \left (x +1\right ) y^{2}-x^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

3.016

13973

\begin{align*} \left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right )&=0 \\ \end{align*}

[_separable]

5.314

13974

\begin{align*} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

4.696

13975

\begin{align*} {\mathrm e}^{\frac {y}{x}} x +y-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.382

13976

\begin{align*} 2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.989

13977

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.737

13978

\begin{align*} 2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

79.425

13979

\begin{align*} y^{3}+x^{3} y^{\prime }&=0 \\ \end{align*}

[_separable]

9.399

13980

\begin{align*} x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.938

13981

\begin{align*} \left (x +y+1\right ) y^{\prime }+1+4 x +3 y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

30.759

13982

\begin{align*} 4 x -y+2+\left (x +y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.698

13983

\begin{align*} 2 x +y-\left (4 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.173

13984

\begin{align*} y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

0.388

13985

\begin{align*} 2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

36.072

13986

\begin{align*} y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.772

13987

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\sec \left (x \right ) \\ \end{align*}

[_linear]

2.248

13988

\begin{align*} y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{x} \\ \end{align*}

[_linear]

2.169

13989

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{3} \\ \end{align*}

[_linear]

3.673

13990

\begin{align*} \left (x^{3}+x \right ) y^{\prime }+4 x^{2} y&=2 \\ \end{align*}

[_linear]

1.950

13991

\begin{align*} x^{2} y^{\prime }+\left (1-2 x \right ) y&=x^{2} \\ \end{align*}

[_linear]

3.000

13992

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\ \end{align*}

[_rational, _Bernoulli]

3.345

13993

\begin{align*} y^{\prime } y+x y^{2}&=x \\ \end{align*}

[_separable]

4.166

13994

\begin{align*} y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )&=\sin \left (x \right ) \\ \end{align*}

[_separable]

34.774

13995

\begin{align*} 4 y^{\prime } x +3 y+{\mathrm e}^{x} x^{4} y^{5}&=0 \\ \end{align*}

[_Bernoulli]

3.143

13996

\begin{align*} y^{\prime }-\frac {1+y}{x +1}&=\sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

45.606

13997

\begin{align*} x^{4} y \left (3 y+2 y^{\prime } x \right )+x^{2} \left (4 y+3 y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

30.588

13998

\begin{align*} y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right )&=0 \\ \end{align*}

[_separable]

0.128

13999

\begin{align*} 2 x^{3} y-y^{2}-\left (2 x^{4}+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.963

14000

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.783