2.2.139 Problems 13801 to 13900

Table 2.291: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13801

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.305

13802

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.796

13803

\begin{align*} x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.056

13804

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.605

13805

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.365

13806

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +b \left (a \,x^{n}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.740

13807

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.970

13808

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.262

13809

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n +2}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+x^{n} a c +b c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.556

13810

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+n \left (n -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

2.652

13811

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.827

13812

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.769

13813

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.302

13814

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

83.977

13815

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\nu \left (\nu +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

79.586

13816

\begin{align*} n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.441

13817

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

50.102

13818

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

51.295

13819

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

92.341

13820

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

46.349

13821

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

137.399

13822

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

130.622

13823

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

193.825

13824

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.933

13825

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.777

13826

\begin{align*} \left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.852

13827

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

491.790

13828

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.734

13829

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

148.598

13830

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.960

13831

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

140.421

13832

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y&=0 \\ \end{align*}

[_Jacobi]

138.553

13833

\begin{align*} x \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

79.962

13834

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

62.309

13835

\begin{align*} \left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.786

13836

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

16.487

13837

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.618

13838

\begin{align*} \left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.259

13839

\begin{align*} \left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.364

13840

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

129.420

13841

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (k +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

136.796

13842

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-k x +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

149.687

13843

\begin{align*} x^{3} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.244

13844

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

62.044

13845

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

59.504

13846

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

57.417

13847

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.286

13848

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

91.907

13849

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.336

13850

\begin{align*} x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.849

13851

\begin{align*} x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

120.214

13852

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (c \,x^{2}+\left (a \lambda +2 b \right ) x +b \lambda \right ) y^{\prime }+\lambda \left (c -2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

169.169

13853

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.697

13854

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (n +m \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.777

13855

\begin{align*} x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

129.488

13856

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

220.178

13857

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }-\left (x \alpha +2 b -\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

208.174

13858

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (-2 a \,x^{2}-\left (b +1\right ) x +k \right ) y^{\prime }+2 \left (a x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

212.140

13859

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-1+k \right ) \left (\left (-a k +n \right ) x +m -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.640

13860

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

51.512

13861

\begin{align*} \left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

176.905

13862

\begin{align*} 2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \,x^{2}-c \right ) y^{\prime }+\lambda \,x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

62.914

13863

\begin{align*} x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (n x +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.544

13864

\begin{align*} x \left (x -1\right ) \left (x -a \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +d \right )-a \right ) x +a \gamma \right ) y^{\prime }+\left (\alpha \beta x -q \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

302.426

13865

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

382.983

13866

\begin{align*} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

88.898

13867

\begin{align*} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

393.517

13868

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (x \alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

688.641

13869

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1014.182

13870

\begin{align*} 2 x \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (a \left (2-k \right ) x^{2}+b \left (1-k \right ) x -c k \right ) y^{\prime }+\lambda \,x^{1+k} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.217

13871

\begin{align*} x^{4} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.435

13872

\begin{align*} x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.223

13873

\begin{align*} x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) x +a b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.783

13874

\begin{align*} b y+2 x^{2} \left (x +a \right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.971

13875

\begin{align*} x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{-2+n}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.638

13876

\begin{align*} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.642

13877

\begin{align*} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y&=c \,x^{2} \left (x -a \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.392

13878

\begin{align*} a \,x^{2} \left (x -1\right )^{2} y^{\prime \prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.069

13879

\begin{align*} x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

116.277

13880

\begin{align*} \left (x^{2}+1\right )^{2} y^{\prime \prime }+a y&=0 \\ \end{align*}

[_Halm]

0.411

13881

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.549

13882

\begin{align*} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.519

13883

\begin{align*} \left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.808

13884

\begin{align*} 4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y&=0 \\ \end{align*}

[_Halm]

0.526

13885

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.723

13886

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

82.089

13887

\begin{align*} \left (-x^{2}+1\right )^{2} y^{\prime \prime }-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (\nu \left (\nu +1\right ) \left (-x^{2}+1\right )-\mu ^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

78.920

13888

\begin{align*} a \left (x^{2}-1\right )^{2} y^{\prime \prime }+b x \left (x^{2}-1\right ) y^{\prime }+\left (c \,x^{2}+d x +e \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

108.353

13889

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.457

13890

\begin{align*} \left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) \left (c \,x^{2}+d \right ) y^{\prime }+2 \left (-a d +b c \right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.846

13891

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-\left (b \,x^{n +1}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.016

13892

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.752

13893

\begin{align*} \left (x -a \right )^{2} \left (-b +x \right )^{2} y^{\prime \prime }-c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.874

13894

\begin{align*} \left (x -a \right )^{2} \left (-b +x \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (-b +x \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.121

13895

\begin{align*} \left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.165

13896

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

83.558

13897

\begin{align*} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

83.224

13898

\begin{align*} \left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.328

13899

\begin{align*} a y-x^{5} y^{\prime }+x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.500

13900

\begin{align*} x^{6} y^{\prime \prime }+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.984