4.3.63 Problems 6201 to 6300

Table 4.489: Second order ode

#

ODE

Mathematica

Maple

Sympy

17777

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = \arctan \left (x \right ) \]

17778

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

17779

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = \arctan \left (x \right ) \]

17780

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

17781

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

17782

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

17783

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

17784

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

17785

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

17786

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

17793

\[ {} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

17845

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

17846

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17847

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17848

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

17849

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

17850

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

17851

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

17852

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17853

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17854

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

17855

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

17856

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

17857

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

17858

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

17862

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

17863

\[ {} y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

17864

\[ {} y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

17865

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

17866

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

17867

\[ {} y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

17868

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

17869

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

17870

\[ {} y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

17871

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

17876

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

17877

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

17878

\[ {} y^{\prime \prime }+16 y = 0 \]

17879

\[ {} y^{\prime \prime }+25 y = 0 \]

17880

\[ {} y^{\prime \prime }-4 y = t \]

17881

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

17882

\[ {} y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

17883

\[ {} y^{\prime \prime }+y = \cos \left (t \right ) \]

17884

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

17885

\[ {} y^{\prime \prime }+y = \csc \left (t \right ) \]

17886

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

17887

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

17888

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

17889

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

17890

\[ {} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

17891

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

17892

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17893

\[ {} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

17894

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

17895

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

17896

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17897

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

17898

\[ {} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

17899

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

17900

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

17909

\[ {} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

17910

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

17911

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

17912

\[ {} x^{\prime \prime }+64 x = 0 \]

17913

\[ {} x^{\prime \prime }+100 x = 0 \]

17914

\[ {} x^{\prime \prime }+x = 0 \]

17915

\[ {} x^{\prime \prime }+4 x = 0 \]

17916

\[ {} x^{\prime \prime }+16 x = 0 \]

17917

\[ {} x^{\prime \prime }+256 x = 0 \]

17918

\[ {} x^{\prime \prime }+9 x = 0 \]

17919

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

17920

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

17921

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

17922

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

17923

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

17924

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

17925

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

17926

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17927

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17928

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

17929

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17930

\[ {} x^{\prime \prime }+x = \cos \left (t \right ) \]

17931

\[ {} x^{\prime \prime }+x = \cos \left (t \right ) \]

17932

\[ {} x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

17933

\[ {} x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

17934

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

17947

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

17948

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

17949

\[ {} x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

17950

\[ {} x^{\prime \prime }+x = {\mathrm e}^{t} \]

18193

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

18195

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

18196

\[ {} \left (x -1\right ) y^{\prime \prime } = 1 \]

18198

\[ {} y^{\prime \prime }+y = 0 \]

18199

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

18200

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18201

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18204

\[ {} y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

18205

\[ {} y^{\prime \prime } = x \,{\mathrm e}^{x} \]

18206

\[ {} y^{\prime \prime } = 2 x \ln \left (x \right ) \]