68.19.7 problem 7

Internal problem ID [17916]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 5. Applications of Higher Order Equations. Exercises 5.1, page 232
Problem number : 7
Date solved : Thursday, October 02, 2025 at 02:29:42 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+16 x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=-2 \\ x^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.049 (sec). Leaf size: 17
ode:=diff(diff(x(t),t),t)+16*x(t) = 0; 
ic:=[x(0) = -2, D(x)(0) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = \frac {\sin \left (4 t \right )}{4}-2 \cos \left (4 t \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 20
ode=D[x[t],{t,2}]+16*x[t]==0; 
ic={x[0]==-2,Derivative[1][x][0 ]==1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{4} (\sin (4 t)-8 \cos (4 t)) \end{align*}
Sympy. Time used: 0.036 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(16*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): -2, Subs(Derivative(x(t), t), t, 0): 1} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {\sin {\left (4 t \right )}}{4} - 2 \cos {\left (4 t \right )} \]