68.19.3 problem 3

Internal problem ID [17912]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 5. Applications of Higher Order Equations. Exercises 5.1, page 232
Problem number : 3
Date solved : Thursday, October 02, 2025 at 02:29:36 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+64 x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&={\frac {3}{4}} \\ x^{\prime }\left (0\right )&=-2 \\ \end{align*}
Maple. Time used: 0.050 (sec). Leaf size: 17
ode:=diff(diff(x(t),t),t)+64*x(t) = 0; 
ic:=[x(0) = 3/4, D(x)(0) = -2]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = -\frac {\sin \left (8 t \right )}{4}+\frac {3 \cos \left (8 t \right )}{4} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 22
ode=D[x[t],{t,2}]+64*x[t]==0; 
ic={x[0]==3/4,Derivative[1][x][0 ]==-2}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{4} (3 \cos (8 t)-\sin (8 t)) \end{align*}
Sympy. Time used: 0.038 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(64*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 3/4, Subs(Derivative(x(t), t), t, 0): -2} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = - \frac {\sin {\left (8 t \right )}}{4} + \frac {3 \cos {\left (8 t \right )}}{4} \]