4.3.62 Problems 6101 to 6200

Table 4.487: Second order ode

#

ODE

Mathematica

Maple

Sympy

17582

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

17583

\[ {} y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

17584

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17585

\[ {} y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17586

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17592

\[ {} y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

17593

\[ {} x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

17594

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

17595

\[ {} y^{\prime \prime }+4 y = 1 \]

17596

\[ {} y^{\prime \prime }+16 y^{\prime } = t \]

17597

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

17598

\[ {} y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

17599

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

17600

\[ {} y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

17601

\[ {} y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

17602

\[ {} y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

17603

\[ {} y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

17604

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

17605

\[ {} y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

17606

\[ {} y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

17607

\[ {} y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

17608

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

17609

\[ {} y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

17610

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

17611

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

17612

\[ {} y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

17613

\[ {} y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

17614

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

17615

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

17616

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

17617

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

17618

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

17619

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

17620

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

17621

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

17622

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

17623

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

17624

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

17625

\[ {} y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

17626

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

17627

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

17628

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

17629

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

17630

\[ {} y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

17631

\[ {} y^{\prime \prime }+4 y = \tan \left (t \right ) \]

17632

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

17633

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

17634

\[ {} y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

17635

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

17636

\[ {} y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

17637

\[ {} y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

17638

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

17639

\[ {} y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

17640

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

17641

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

17642

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

17643

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

17644

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

17645

\[ {} y^{\prime \prime }+4 y = f \left (t \right ) \]

17646

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

17647

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

17648

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

17649

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

17650

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

17651

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

17652

\[ {} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

17653

\[ {} \left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

17692

\[ {} 2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

17727

\[ {} 5 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime } = 0 \]

17728

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

17729

\[ {} 2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

17730

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

17731

\[ {} 4 x^{2} y^{\prime \prime }+17 y = 0 \]

17732

\[ {} 9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

17733

\[ {} 2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

17734

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

17735

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

17736

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

17737

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

17738

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

17747

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

17748

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

17749

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

17750

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

17751

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

17752

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

17753

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

17754

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

17757

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

17758

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

17759

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

17760

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

17765

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

17766

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

17767

\[ {} 4 x^{2} y^{\prime \prime }+y = x^{3} \]

17768

\[ {} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

17769

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

17770

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

17771

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17776

\[ {} 4 y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]