4.3.13 Problems 1201 to 1300

Table 4.389: Second order ode

#

ODE

Mathematica

Maple

Sympy

5797

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = \sin \left (x \right ) \]

5798

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

5799

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

5800

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 4 x^{2} {\mathrm e}^{x} \]

5801

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{a x} \]

5802

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

5803

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \cosh \left (x \right ) {\mathrm e}^{-3 x} \]

5804

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = 0 \]

5805

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = x \]

5806

\[ {} 16 y+8 y^{\prime }+y^{\prime \prime } = 0 \]

5807

\[ {} 16 y+8 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{x}-{\mathrm e}^{2 x} \]

5808

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

5809

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{3 x} \]

5810

\[ {} y b^{2}+2 a y^{\prime }+y^{\prime \prime } = 0 \]

5811

\[ {} y b^{2}+2 a y^{\prime }+y^{\prime \prime } = c \sin \left (k x \right ) \]

5812

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

5813

\[ {} \left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime } = 0 \]

5814

\[ {} b y+a y^{\prime }+y^{\prime \prime } = 0 \]

5815

\[ {} b y+a y^{\prime }+y^{\prime \prime } = f \left (x \right ) \]

5816

\[ {} \left (c x +b \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5817

\[ {} \left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5818

\[ {} \left (b +{\mathrm e}^{x} c \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5819

\[ {} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime } = 0 \]

5820

\[ {} b \,{\mathrm e}^{k x} y+a y^{\prime }+y^{\prime \prime } = 0 \]

5821

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

5822

\[ {} -y+x y^{\prime }+y^{\prime \prime } = 0 \]

5823

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

5824

\[ {} n y-x y^{\prime }+y^{\prime \prime } = 0 \]

5825

\[ {} -a y-x y^{\prime }+y^{\prime \prime } = 0 \]

5826

\[ {} -\left (1-x \right ) y-x y^{\prime }+y^{\prime \prime } = 0 \]

5827

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

5828

\[ {} -8 y+2 x y^{\prime }+y^{\prime \prime } = 0 \]

5829

\[ {} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

5830

\[ {} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5831

\[ {} 2 \left (2 x^{2}+1\right ) y+4 x y^{\prime }+y^{\prime \prime } = 0 \]

5832

\[ {} -\left (-4 x^{2}+3\right ) y-4 x y^{\prime }+y^{\prime \prime } = 0 \]

5833

\[ {} -\left (-4 x^{2}+3\right ) y-4 x y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x^{2}} \]

5834

\[ {} a^{2} x^{2} y-2 a x y^{\prime }+y^{\prime \prime } = 0 \]

5835

\[ {} b y+a x y^{\prime }+y^{\prime \prime } = 0 \]

5836

\[ {} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5837

\[ {} \left (\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5838

\[ {} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5839

\[ {} -2 a \left (-2 x^{2} a +1\right ) y-4 a x y^{\prime }+y^{\prime \prime } = 0 \]

5840

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

5841

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x \]

5842

\[ {} -4 x y+x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

5843

\[ {} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime } = 0 \]

5844

\[ {} a \left (1+k \right ) x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5845

\[ {} a k \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5846

\[ {} -a \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5847

\[ {} b \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5848

\[ {} 2 y-\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5849

\[ {} k \left (1+k \right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5850

\[ {} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5851

\[ {} \left (p \left (p +1\right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5852

\[ {} \left (\operatorname {a0} -\operatorname {a2} \csc \left (x \right )^{2}+4 \operatorname {a1} \sin \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5853

\[ {} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5854

\[ {} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \csc \left (x \right ) \]

5855

\[ {} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5856

\[ {} \left (a \cot \left (x \right )^{2}+b \cot \left (x \right ) \csc \left (x \right )+c \csc \left (x \right )^{2}\right ) y+k \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5857

\[ {} 2 y-\cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5858

\[ {} a \tan \left (x \right )^{2} y-2 \cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5859

\[ {} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5860

\[ {} \left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5861

\[ {} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5862

\[ {} \left (\cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 1+a \csc \left (x \right ) \]

5863

\[ {} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5864

\[ {} a \csc \left (x \right )^{2} y+\left (2+\cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5865

\[ {} -2 \left (\cos \left (x \right )+1\right ) \sec \left (x \right ) y-\left (2+3 \cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5866

\[ {} \sin \left (x \right )^{2} y-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5867

\[ {} -y \cos \left (x \right )-y^{\prime } \sin \left (x \right )+y^{\prime \prime } = a -x +x \ln \left (x \right ) \]

5868

\[ {} b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5869

\[ {} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5870

\[ {} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5871

\[ {} -a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5872

\[ {} \left (a \cos \left (x \right )^{2}-\sec \left (x \right )^{2}\right ) y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5873

\[ {} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5874

\[ {} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \left (1+x \right ) \sec \left (x \right ) \]

5875

\[ {} 3 y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5876

\[ {} b y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5877

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5878

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = \sin \left (x \right ) \]

5879

\[ {} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5880

\[ {} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5881

\[ {} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5882

\[ {} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5883

\[ {} b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5884

\[ {} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5885

\[ {} f \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5886

\[ {} a k \,x^{k -1} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime } = 0 \]

5887

\[ {} 3 y-10 y^{\prime }+3 y^{\prime \prime } = 0 \]

5888

\[ {} 4 y^{\prime \prime } = \left (x^{2}+a \right ) y \]

5889

\[ {} \left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime } = 0 \]

5890

\[ {} 3 y-8 y^{\prime }+4 y^{\prime \prime } = 0 \]

5891

\[ {} y+x y^{\prime \prime } = 0 \]

5892

\[ {} \left (x +a \right ) y+x y^{\prime \prime } = 0 \]

5893

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

5894

\[ {} x y^{\prime \prime }+y^{\prime } = x^{n} \]

5895

\[ {} -y+y^{\prime }+x y^{\prime \prime } = 0 \]

5896

\[ {} -\left (1+x \right ) y+y^{\prime }+x y^{\prime \prime } = 0 \]