| # | ODE | Mathematica | Maple | Sympy |
| \[
{} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+24 \sin \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )+12 \cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )+10 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+14 y \left (t \right )+6 \,{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+4 y \left (t \right )+6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )+6 \,{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+2 z \left (t \right )+29 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+z \left (t \right )+39 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )+5 \sin \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-10 \cos \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )+2]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )-3 z \left (t \right )+5 \cos \left (2 t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+7 y \left (t \right )+3 z \left (t \right )+23 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )-3 z \left (t \right )+2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2 z \left (t \right )+4 \,{\mathrm e}^{t}, z^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right )+4 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )+10 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )-13 y \left (t \right )+24 \sinh \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )-6 t, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+10 t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = x^{{3}/{2}} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 2 \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+4 y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime } \left (1+x \right )-k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\alpha ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\alpha ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+9 y = 18 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = f \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = \left \{\begin {array}{cc} t & 0\le t \le 3 \\ t +2 & 3<t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right ) = {\mathrm e}^{-t}]
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{\prime \prime }+2 t x^{\prime }-4 x = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c v^{\prime \prime }+\frac {v^{\prime }}{r}+\frac {v}{L} = \delta \left (t -1\right )-\delta \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y-\left (1-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-a +x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+s^{2}-\sqrt {t}\, s^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime }+r \tan \left (t \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1}-\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (-{\mathrm e}^{x}+1\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x +\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \sqrt {s t}-s+t s^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t -s+t s^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2} y^{\prime } = y^{3}+x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y-x y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y y^{\prime }+x}{\sqrt {x^{2}+y^{2}}} = m
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \sqrt {x^{2}+y^{2}}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {a y}{x} = \frac {1+x}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {n y}{x} = a \,x^{-n}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x^{3} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )-x y+a x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{2} y^{\prime }-a y^{3}-x -1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2} y^{3}+x y\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y^{3}-x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|