63.1.14 problem 14

Internal problem ID [15454]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 14
Date solved : Thursday, October 02, 2025 at 10:15:02 AM
CAS classification : [_separable]

\begin{align*} z-\left (-a^{2}+t^{2}\right ) z^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 26
ode:=z(t)-(-a^2+t^2)*diff(z(t),t) = 0; 
dsolve(ode,z(t), singsol=all);
 
\[ z = c_1 \left (t +a \right )^{-\frac {1}{2 a}} \left (t -a \right )^{\frac {1}{2 a}} \]
Mathematica. Time used: 0.036 (sec). Leaf size: 34
ode=z[t]-(t^2-a^2)*D[z[t],t]==0; 
ic={}; 
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
 
\begin{align*} z(t)&\to c_1 \exp \left (\int _1^t\frac {1}{K[1]^2-a^2}dK[1]\right )\\ z(t)&\to 0 \end{align*}
Sympy. Time used: 0.282 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
a = symbols("a") 
z = Function("z") 
ode = Eq((a**2 - t**2)*Derivative(z(t), t) + z(t),0) 
ics = {} 
dsolve(ode,func=z(t),ics=ics)
 
\[ z{\left (t \right )} = C_{1} e^{\frac {\log {\left (- a + t \right )} - \log {\left (a + t \right )}}{2 a}} \]