Internal
problem
ID
[15499]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
78
Date
solved
:
Thursday, October 02, 2025 at 10:18:57 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _Bernoulli]
ode:=1/x^2+3*y(x)^2/x^4 = 2*y(x)/x^3*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=1/x^2+ 3*y[x]^2/x^4==2*y[x]/x^3*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**(-2) - 2*y(x)*Derivative(y(x), x)/x**3 + 3*y(x)**2/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)