| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{2 x}+x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} a +b \,{\mathrm e}^{-x} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 24 x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{2}+\frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y+y^{\prime } \left (x^{2}+2\right )+4 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y^{\prime \prime \prime } = y^{\prime \prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = \left ({\mathrm e}^{x}+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{2}+3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 x +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 y^{\prime } \left (1+x \right )+y = x^{2}+4 x +3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+5 x^{\prime \prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-4 x^{\prime \prime }+x^{\prime }-4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-3 x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+4 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+x^{\prime \prime }-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime \prime \prime }-6 x^{\prime \prime }+5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-4 x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-8 x^{\prime \prime \prime }+23 x^{\prime \prime }-28 x^{\prime }+12 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }-4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (5\right )}-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (5\right )}+x^{\prime \prime \prime \prime }-x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|