4.12.16 Problems 1501 to 1600

Table 4.1109: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

20449

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

20451

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

20452

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

20453

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

20454

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

20455

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

20456

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

20457

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

20468

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

20471

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

20472

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

20473

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

20474

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{2 x}+x^{2}+x \]

20475

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{x} \]

20479

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

20480

\[ {} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} a +b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

20483

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right ) \]

20484

\[ {} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

20488

\[ {} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

20489

\[ {} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

20490

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

20492

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

20493

\[ {} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

20495

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 24 x \cos \left (x \right ) \]

20602

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

20603

\[ {} x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

20604

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2} \]

20605

\[ {} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

20606

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

20607

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

20609

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

20620

\[ {} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

20621

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 4 x \]

20622

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

20624

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{2}+\frac {1}{x^{2}} \]

20625

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

20628

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]

20629

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2} \]

20635

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

20636

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

20645

\[ {} 3 x y+y^{\prime } \left (x^{2}+2\right )+4 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 2 \]

20646

\[ {} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

20647

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

20649

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

20654

\[ {} x^{3} y^{\prime \prime \prime } = 1 \]

20656

\[ {} y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

20669

\[ {} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

20674

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

20693

\[ {} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

20694

\[ {} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

20695

\[ {} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

20696

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

20697

\[ {} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

20698

\[ {} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime } \]

20707

\[ {} a y^{\prime \prime \prime } = y^{\prime \prime } \]

20708

\[ {} x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

20709

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

20718

\[ {} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

20725

\[ {} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

20726

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

20814

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

20815

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

20816

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

20818

\[ {} y^{\prime \prime \prime }+y = \left ({\mathrm e}^{x}+1\right )^{2} \]

20820

\[ {} y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

20821

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

20823

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

20862

\[ {} x y-x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 1 \]

20864

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{2}+3 x \]

20865

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

20866

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

20868

\[ {} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 x +\frac {10}{x} \]

20870

\[ {} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

20872

\[ {} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 y^{\prime } \left (1+x \right )+y = x^{2}+4 x +3 \]

20877

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

20878

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

20879

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

20886

\[ {} y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

20895

\[ {} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

20922

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]

20982

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 0 \]

21291

\[ {} 2 x^{\prime \prime \prime } = 0 \]

21292

\[ {} x^{\prime \prime \prime }-x^{\prime } = 0 \]

21293

\[ {} x^{\prime \prime \prime }+5 x^{\prime \prime }-6 x = 0 \]

21294

\[ {} x^{\prime \prime \prime }-4 x^{\prime \prime }+x^{\prime }-4 x = 0 \]

21295

\[ {} x^{\prime \prime \prime }-3 x^{\prime \prime }+4 x = 0 \]

21296

\[ {} x^{\prime \prime \prime }+4 x^{\prime } = 0 \]

21297

\[ {} x^{\prime \prime \prime }-x^{\prime } = 0 \]

21298

\[ {} x^{\prime \prime \prime }-x^{\prime } = 0 \]

21299

\[ {} x^{\prime \prime \prime }+x^{\prime \prime }-2 x = 0 \]

21300

\[ {} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0 \]

21301

\[ {} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0 \]

21302

\[ {} x^{\prime \prime \prime \prime }-6 x^{\prime \prime }+5 x = 0 \]

21303

\[ {} x^{\prime \prime \prime \prime }-x = 0 \]

21304

\[ {} x^{\prime \prime \prime \prime }-x^{\prime \prime } = 0 \]

21305

\[ {} x^{\prime \prime \prime \prime }-4 x^{\prime \prime }+x = 0 \]

21306

\[ {} x^{\prime \prime \prime \prime }-8 x^{\prime \prime \prime }+23 x^{\prime \prime }-28 x^{\prime }+12 x = 0 \]

21307

\[ {} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }-4 x = 0 \]

21308

\[ {} x^{\left (5\right )}-x^{\prime } = 0 \]

21309

\[ {} x^{\left (5\right )}+x^{\prime \prime \prime \prime }-x^{\prime }-x = 0 \]