Internal
problem
ID
[21306]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
6.
Higher
order
linear
equations.
Excercise
6.5
at
page
133
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 07:28:16 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(x(t),t),t),t),t)-8*diff(diff(diff(x(t),t),t),t)+23*diff(diff(x(t),t),t)-28*diff(x(t),t)+12*x(t) = 0; ic:=[x(infinity) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,4}]-8*D[x[t],{t,3}]+23*D[x[t],{t,2}]-28*D[x[t],t]+12*x[t]==0; ic={x[Infinity]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(12*x(t) - 28*Derivative(x(t), t) + 23*Derivative(x(t), (t, 2)) - 8*Derivative(x(t), (t, 3)) + Derivative(x(t), (t, 4)),0) ics = {x(oo): 0} dsolve(ode,func=x(t),ics=ics)