Internal
problem
ID
[21301]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
6.
Higher
order
linear
equations.
Excercise
6.5
at
page
133
Problem
number
:
11
Date
solved
:
Friday, October 03, 2025 at 07:49:36 AM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(x(t),t),t),t)-3*diff(x(t),t)+k*x(t) = 0; ic:=[x(0) = 1, x(infinity) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,3}]-3*D[x[t],t]+k*x[t]==0; ic={x[0]==1,x[Infinity]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") k = symbols("k") x = Function("x") ode = Eq(k*x(t) - 3*Derivative(x(t), t) + Derivative(x(t), (t, 3)),0) ics = {x(0): 1, x(oo): 0} dsolve(ode,func=x(t),ics=ics)
False