4.6.3 Problems 201 to 300

Table 4.729: Second order non-linear ODE

#

ODE

Mathematica

Maple

Sympy

6460

\[ {} y y^{\prime \prime } = \operatorname {a2} y^{2}+\operatorname {a3} y^{a +1}+\operatorname {a1} y y^{\prime }+a {y^{\prime }}^{2} \]

6461

\[ {} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6462

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

6463

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

6464

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \]

6465

\[ {} 2 {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime \prime } = 0 \]

6466

\[ {} \left (a +y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6467

\[ {} {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = b \]

6468

\[ {} b {y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime } = 0 \]

6469

\[ {} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime } = 0 \]

6470

\[ {} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime } = 0 \]

6471

\[ {} \left (x -y\right ) y^{\prime \prime } = \left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) \]

6472

\[ {} \left (x -y\right ) y^{\prime \prime } = f \left (y^{\prime }\right ) \]

6473

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6474

\[ {} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0 \]

6475

\[ {} 2 y y^{\prime \prime } = a +{y^{\prime }}^{2} \]

6476

\[ {} 2 y y^{\prime \prime } = 8 y^{3}+{y^{\prime }}^{2} \]

6477

\[ {} 2 y y^{\prime \prime } = 4 y^{2}+8 y^{3}+{y^{\prime }}^{2} \]

6478

\[ {} 2 y y^{\prime \prime } = 4 y^{2} \left (2 y+x \right )+{y^{\prime }}^{2} \]

6479

\[ {} 2 y y^{\prime \prime } = y^{2} \left (b y+a \right )+{y^{\prime }}^{2} \]

6480

\[ {} 2 y y^{\prime \prime } = -1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \]

6481

\[ {} 2 y y^{\prime \prime } = y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \]

6482

\[ {} 2 y y^{\prime \prime } = 3 y^{4}+{y^{\prime }}^{2} \]

6483

\[ {} 2 y y^{\prime \prime } = -a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \]

6484

\[ {} 2 y y^{\prime \prime } = 8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6485

\[ {} 2 y y^{\prime \prime } = -1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6486

\[ {} 2 y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

6487

\[ {} 2 y y^{\prime \prime } = 4 y^{2}+3 {y^{\prime }}^{2} \]

6488

\[ {} 2 y y^{\prime \prime } = f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \]

6489

\[ {} 2 y y^{\prime \prime } = y^{2} \left (1-3 y^{2}\right )+6 {y^{\prime }}^{2} \]

6490

\[ {} 2 y y^{\prime \prime } = -y^{2} \left (1+a y^{3}\right )+6 {y^{\prime }}^{2} \]

6491

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) \]

6492

\[ {} 3 y y^{\prime \prime } = 36 y^{2}+2 {y^{\prime }}^{2} \]

6493

\[ {} 3 y y^{\prime \prime } = 5 {y^{\prime }}^{2} \]

6494

\[ {} 4 y y^{\prime \prime } = -4 y+3 {y^{\prime }}^{2} \]

6495

\[ {} 4 y y^{\prime \prime } = 12 y^{2}+3 {y^{\prime }}^{2} \]

6496

\[ {} 4 y y^{\prime \prime } = a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2} \]

6497

\[ {} 5 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6498

\[ {} 12 y y^{\prime \prime } = -8 y^{3}+15 {y^{\prime }}^{2} \]

6499

\[ {} a y y^{\prime \prime } = \left (a -1\right ) {y^{\prime }}^{2} \]

6500

\[ {} a \left (2+a \right )^{2} y y^{\prime \prime } = -a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (a -1\right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \]

6501

\[ {} y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6502

\[ {} x {y^{\prime }}^{2}+x y y^{\prime \prime } = y y^{\prime } \]

6503

\[ {} x y y^{\prime \prime } = -y y^{\prime }+x {y^{\prime }}^{2} \]

6504

\[ {} x y y^{\prime \prime } = y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \]

6505

\[ {} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6506

\[ {} x {y^{\prime }}^{2}+x y y^{\prime \prime } = 3 y y^{\prime } \]

6507

\[ {} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6508

\[ {} x y y^{\prime \prime } = x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6509

\[ {} x y y^{\prime \prime } = b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \]

6510

\[ {} y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6511

\[ {} y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6512

\[ {} -y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6513

\[ {} x y y^{\prime \prime } = -\left (1+y\right ) y^{\prime }+2 x {y^{\prime }}^{2} \]

6514

\[ {} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6515

\[ {} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6516

\[ {} 4 y y^{\prime }-4 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

6517

\[ {} a y^{\prime } \left (x y^{\prime }-y\right )+x y y^{\prime \prime } = 0 \]

6518

\[ {} \left (x -y\right ) y^{\prime }+x {y^{\prime }}^{2}+x \left (x +y\right ) y^{\prime \prime } = y \]

6519

\[ {} 2 x y y^{\prime \prime } = -y y^{\prime }+x {y^{\prime }}^{2} \]

6520

\[ {} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (2 y+x \right ) y^{\prime \prime } = 0 \]

6521

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

6522

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 3 y^{2} \]

6523

\[ {} x^{2} y y^{\prime \prime } = a y^{2}+a x y y^{\prime }+2 x^{2} {y^{\prime }}^{2} \]

6524

\[ {} c y^{2}+b x y y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime } = 0 \]

6525

\[ {} 2 \left (1-y\right )^{2} y-2 x \left (1-y\right ) y^{\prime }+2 x^{2} {y^{\prime }}^{2}+x^{2} \left (1-y\right ) y^{\prime \prime } = 0 \]

6526

\[ {} x^{2} \left (x -y\right ) y^{\prime \prime } = \left (x y^{\prime }-y\right )^{2} \]

6527

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} \left (x -y\right ) y^{\prime \prime } = 0 \]

6528

\[ {} x^{2} \left (x -y\right ) y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{2} \]

6529

\[ {} 2 x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

6530

\[ {} 2 x^{2} y y^{\prime \prime } = -4 y^{2}+2 y y^{\prime } x +x^{2} {y^{\prime }}^{2} \]

6531

\[ {} 3 x y^{2}+6 x^{2} y y^{\prime }+x^{3} {y^{\prime }}^{2}+x^{3} y y^{\prime \prime } = a \]

6532

\[ {} x \left (1+x \right )^{2} y y^{\prime \prime } = a \left (x +2\right ) y^{2}-2 \left (x^{2}+1\right ) y y^{\prime }+x \left (1+x \right )^{2} {y^{\prime }}^{2} \]

6533

\[ {} 3 x y^{2}-12 x^{2} y y^{\prime }+4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}+8 \left (-x^{3}+1\right ) y y^{\prime \prime } = 0 \]

6534

\[ {} \sqrt {a^{2}+x^{2}}\, \left (b {y^{\prime }}^{2}+y y^{\prime \prime }\right ) = y y^{\prime } \]

6535

\[ {} \sqrt {a^{2}-x^{2}}\, \left (-y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime }\right ) = b x {y^{\prime }}^{2} \]

6536

\[ {} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime } = 0 \]

6537

\[ {} 4 f \left (x \right ) y y^{\prime \prime } = 4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \]

6538

\[ {} y^{2} y^{\prime \prime } = a \]

6539

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

6540

\[ {} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = b x +a \]

6541

\[ {} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

6542

\[ {} \left (1+y^{2}\right ) y^{\prime \prime } = 3 y {y^{\prime }}^{2} \]

6543

\[ {} \left (1+y^{2}\right ) y^{\prime \prime } = \left (a +3 y\right ) {y^{\prime }}^{2} \]

6544

\[ {} y^{\prime } \left (1+{y^{\prime }}^{2}\right )+\left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

6545

\[ {} 2 y^{\prime }+2 y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime \prime } = a \]

6546

\[ {} \left (x +y^{2}\right ) y^{\prime \prime } = 2 \left (x -y^{2}\right ) {y^{\prime }}^{3}-y^{\prime } \left (1+4 y y^{\prime }\right ) \]

6547

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6548

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime } = 2 \left (1+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6549

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = \left (1-2 y\right ) {y^{\prime }}^{2} \]

6550

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = f \left (x \right ) \left (1-y\right ) y y^{\prime }+\left (1-2 y\right ) {y^{\prime }}^{2} \]

6551

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = \left (1-3 y\right ) {y^{\prime }}^{2} \]

6552

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = 4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6553

\[ {} 2 \left (1-y\right ) y y^{\prime \prime } = -\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \]

6554

\[ {} 3 \left (1-y\right ) y y^{\prime \prime } = 2 \left (1-2 y\right ) {y^{\prime }}^{2} \]

6555

\[ {} 4 \left (1-y\right ) y y^{\prime \prime } = 3 \left (1-2 y\right ) {y^{\prime }}^{2} \]

6556

\[ {} x y^{2} y^{\prime \prime } = a \]

6557

\[ {} x y^{2} y^{\prime \prime } = \left (a -y^{2}\right ) y^{\prime }+x y {y^{\prime }}^{2} \]

6558

\[ {} x^{2} y^{2} y^{\prime \prime } = \left (x^{2}+y^{2}\right ) \left (x y^{\prime }-y\right ) \]

6559

\[ {} \left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}+\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime } = x \left (a^{2}-y^{2}\right ) y^{\prime } \]