23.4.184 problem 184

Internal problem ID [6486]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 184
Date solved : Tuesday, September 30, 2025 at 03:01:51 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 2 y y^{\prime \prime }&=3 {y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 17
ode:=2*y(x)*diff(diff(y(x),x),x) = 3*diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {4}{\left (c_1 x +c_2 \right )^{2}} \\ \end{align*}
Mathematica. Time used: 0.092 (sec). Leaf size: 21
ode=2*y[x]*D[y[x],{x,2}] == 3*D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2}{(x+2 c_1){}^2}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(6)*sqrt(y(x)*Derivative(y(x), (x, 2)))/3 + Derivative(y(x)