4.6.2 Problems 101 to 200

Table 4.727: Second order non-linear ODE

#

ODE

Mathematica

Maple

Sympy

6356

\[ {} a {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6357

\[ {} y^{\prime \prime } = x {y^{\prime }}^{3} \]

6358

\[ {} \left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6359

\[ {} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime } = 0 \]

6360

\[ {} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{k} \]

6361

\[ {} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime } = 0 \]

6362

\[ {} y^{\prime \prime } = A \,x^{a} y^{b} {y^{\prime }}^{c} \]

6363

\[ {} y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

6364

\[ {} y^{\prime \prime } = a \sqrt {b y^{2}+{y^{\prime }}^{2}} \]

6365

\[ {} y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6366

\[ {} y^{\prime \prime } = a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6367

\[ {} y^{\prime \prime } = a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6368

\[ {} y^{\prime \prime } = a y {\left (1+\left (b -y^{\prime }\right )^{2}\right )}^{{3}/{2}} \]

6369

\[ {} y^{\prime \prime } = a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6370

\[ {} y^{3} y^{\prime }+y^{\prime \prime } = y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \]

6371

\[ {} y^{\prime \prime } = f \left (y^{\prime }\right ) \]

6372

\[ {} y^{\prime \prime } = f \left (a x +b y, y^{\prime }\right ) \]

6373

\[ {} y^{\prime \prime } = f \left (x , \frac {y^{\prime }}{y}\right ) y \]

6374

\[ {} y^{\prime \prime } = x^{n -2} f \left (y x^{-n}, x^{-n +1} y^{\prime }\right ) \]

6375

\[ {} 2 y^{\prime \prime } = 1+12 y^{2} \]

6376

\[ {} 2 y^{\prime \prime } = y \left (a -y^{2}\right ) \]

6377

\[ {} 9 {y^{\prime }}^{4}+8 y^{\prime \prime } = 0 \]

6378

\[ {} a \,{\mathrm e}^{y} x +y^{\prime }+x y^{\prime \prime } = 0 \]

6379

\[ {} x y^{5}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6380

\[ {} x y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6381

\[ {} x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6382

\[ {} a \,x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6383

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

6385

\[ {} x y^{\prime \prime } = \left (1-y\right ) y^{\prime } \]

6386

\[ {} x {y^{\prime }}^{2}+x y^{\prime \prime } = y^{\prime } \]

6387

\[ {} x y^{\prime \prime } = x {y^{\prime }}^{2}+y^{\prime } \]

6388

\[ {} -2 y^{\prime }+2 x {y^{\prime }}^{2}+x y^{\prime \prime } = 0 \]

6389

\[ {} x y^{\prime \prime } = -y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \]

6390

\[ {} 2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x y^{\prime \prime } = b \]

6391

\[ {} \left (-y+a x y^{\prime }\right )^{2}+x y^{\prime \prime } = b \]

6392

\[ {} x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

6393

\[ {} 2 y^{\prime }+x y^{\prime \prime } = a \,x^{2 k} {y^{\prime }}^{k} \]

6394

\[ {} y^{\prime }+{y^{\prime }}^{3}+2 x y^{\prime \prime } = 0 \]

6395

\[ {} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime } = 0 \]

6396

\[ {} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime } = 0 \]

6397

\[ {} \left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime } = x^{k} f \left (x^{k} y, k y+x y^{\prime }\right ) \]

6398

\[ {} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6399

\[ {} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime } \]

6400

\[ {} 2+4 x y^{\prime }+x^{2} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6401

\[ {} x^{2} y^{\prime \prime } = 6 y-4 x^{2} y^{2}+x^{4} {y^{\prime }}^{2} \]

6402

\[ {} a \left (x y^{\prime }-y\right )^{2}+x^{2} y^{\prime \prime } = b \,x^{2} \]

6403

\[ {} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b \]

6404

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6405

\[ {} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \]

6406

\[ {} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y \]

6407

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

6408

\[ {} 2 y+a y^{3}+9 x^{2} y^{\prime \prime } = 0 \]

6410

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6411

\[ {} x^{3} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{2} \]

6412

\[ {} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0 \]

6413

\[ {} x^{4} y^{\prime \prime } = -4 y^{2}+x \left (x^{2}+2 y\right ) y^{\prime } \]

6414

\[ {} x^{4} y^{\prime \prime } = -4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right ) \]

6415

\[ {} \left (x y^{\prime }-y\right )^{3}+x^{4} y^{\prime \prime } = 0 \]

6416

\[ {} y^{b}+x^{a} y^{\prime \prime } = 0 \]

6417

\[ {} 24-48 x y+\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6418

\[ {} b +a x y-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6419

\[ {} \sqrt {x}\, y^{\prime \prime } = y^{{3}/{2}} \]

6420

\[ {} x^{{3}/{2}} y^{\prime \prime } = f \left (\frac {y}{\sqrt {x}}\right ) \]

6422

\[ {} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime } = g \left (y, f \left (x \right ) y^{\prime }\right ) \]

6423

\[ {} f \left (x \right )^{2} y^{\prime \prime } = -24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \]

6425

\[ {} 2 f \left (x \right )^{2} y^{\prime \prime } = 2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right ) \]

6426

\[ {} y y^{\prime \prime } = a \]

6427

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

6428

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6429

\[ {} y y^{\prime \prime } = -a^{2}+{y^{\prime }}^{2} \]

6430

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = a^{2} \]

6431

\[ {} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6432

\[ {} 2 a^{2} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6433

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+y^{3} \left (\operatorname {a2} +\operatorname {a3} y\right )+{y^{\prime }}^{2} \]

6434

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+{y^{\prime }}^{2} \]

6435

\[ {} y y^{\prime \prime } = y y^{\prime }+{y^{\prime }}^{2} \]

6436

\[ {} y y^{\prime \prime } = {\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2} \]

6437

\[ {} y y^{\prime \prime } = \ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \]

6438

\[ {} y y^{\prime \prime } = -x^{2} y^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \]

6439

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y^{\prime } \]

6440

\[ {} y y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

6441

\[ {} y y^{\prime \prime } = y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2} \]

6442

\[ {} y y^{\prime \prime } = -2 y^{\prime }+{y^{\prime }}^{2} \]

6443

\[ {} y-x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6444

\[ {} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

6445

\[ {} y y^{\prime \prime } = y^{3}-f^{\prime }\left (x \right ) y+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \]

6446

\[ {} y y^{\prime \prime } = -f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \]

6447

\[ {} y y^{\prime \prime } = -b y^{2}-a y y^{\prime }+{y^{\prime }}^{2} \]

6448

\[ {} y y^{\prime \prime } = b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2} \]

6449

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6450

\[ {} y y^{\prime \prime } = g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \]

6451

\[ {} y y^{\prime \prime } = -y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \]

6452

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

6453

\[ {} y y^{\prime \prime } = -2 y^{2}+2 {y^{\prime }}^{2} \]

6454

\[ {} y y^{\prime \prime } = y^{2}-3 y y^{\prime }+3 {y^{\prime }}^{2} \]

6455

\[ {} y y^{\prime \prime } = a {y^{\prime }}^{2} \]

6456

\[ {} y y^{\prime \prime } = b +a {y^{\prime }}^{2} \]

6457

\[ {} y y^{\prime \prime } = b y^{3}+a {y^{\prime }}^{2} \]

6458

\[ {} y y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+a {y^{\prime }}^{2} \]

6459

\[ {} y y^{\prime \prime } = c y^{2}+b y y^{\prime }+a {y^{\prime }}^{2} \]