Internal
problem
ID
[6520]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
218
Date
solved
:
Tuesday, September 30, 2025 at 03:02:37 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]
ode:=x^2+2*y(x)+4*(x+y(x))*diff(y(x),x)+2*x*diff(y(x),x)^2+x*(x+2*y(x))*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 + 2*y[x] + 4*(x + y[x])*D[y[x],x] + 2*x*D[y[x],x]^2 + x*(x + 2*y[x])*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + x*(x + 2*y(x))*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x)**2 + (4*x + 4*y(x))*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x + sqrt(-2*x**3*Derivative(y(x), (x, 2)