2.2.90 Problems 8901 to 9000

Table 2.193: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8901

\begin{align*} y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

8902

\begin{align*} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

8903

\begin{align*} y^{\prime \prime }+10 y&=0 \\ y \left (0\right ) &= \pi \\ y^{\prime }\left (0\right ) &= \pi ^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.563

8904

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

8905

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

8906

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

8907

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

8908

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=3 \,{\mathrm e}^{-x}+2 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

8909

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

8910

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.662

8911

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.376

8912

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

8913

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }-6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

8914

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\omega x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.267

8915

\begin{align*} y^{\prime \prime \prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.044

8916

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

8917

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.044

8918

\begin{align*} y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.054

8919

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

8920

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.045

8921

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.039

8922

\begin{align*} y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.059

8923

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.072

8924

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.116

8925

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.620

8926

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.763

8927

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.039

8928

\begin{align*} y^{\left (5\right )}+2 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.122

8929

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.046

8930

\begin{align*} y^{\prime \prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.135

8931

\begin{align*} y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.058

8932

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

8933

\begin{align*} y^{\prime \prime \prime \prime }-k^{4} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_x]]

0.102

8934

\begin{align*} y^{\prime \prime \prime }-y&=x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.097

8935

\begin{align*} y^{\prime \prime \prime }-8 y&={\mathrm e}^{i x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.456

8936

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=\cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.112

8937

\begin{align*} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.116

8938

\begin{align*} y^{\prime \prime \prime \prime }-y&=\cos \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.395

8939

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&={\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

8940

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.288

8941

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

8942

\begin{align*} y^{\prime \prime }-4 y&=3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

8943

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}+\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

8944

\begin{align*} y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

8945

\begin{align*} y^{\prime \prime }+y&=x \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

8946

\begin{align*} y^{\prime \prime }+i y^{\prime }+2 y&=2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

8947

\begin{align*} y^{\prime \prime \prime }&=x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _quadrature]]

0.477

8948

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.141

8949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.359

8950

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.138

8951

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.275

8952

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.079

8953

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.082

8954

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.085

8955

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

0.084

8956

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.095

8957

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.092

8958

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.105

8959

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.079

8960

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.070

8961

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

8962

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Hermite]

0.250

8963

\begin{align*} y^{\prime \prime }+3 x^{2} y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.295

8964

\begin{align*} y^{\prime \prime }-x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.218

8965

\begin{align*} y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.272

8966

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.214

8967

\begin{align*} y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.309

8968

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.282

8969

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.351

8970

\begin{align*} y^{\prime \prime \prime }-y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

8971

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.450

8972

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.940

8973

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.883

8974

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.511

8975

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.613

8976

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.700

8977

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.084

8978

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.112

8979

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.257

8980

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.892

8981

\begin{align*} x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.924

8982

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.497

8983

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.760

8984

\begin{align*} 3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.386

8985

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.111

8986

\begin{align*} y^{\prime \prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.232

8987

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[_Gegenbauer]

0.664

8988

\begin{align*} \left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

0.982

8989

\begin{align*} x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.489

8990

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.615

8991

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.724

8992

\begin{align*} x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.580

8993

\begin{align*} 3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.772

8994

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.445

8995

\begin{align*} x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.625

8996

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.824

8997

\begin{align*} 4 x^{2} y^{\prime \prime }-4 \,{\mathrm e}^{x} y^{\prime } x +3 y \cos \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

2.934

8998

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.718

8999

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.566

9000

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.746