2.2.89 Problems 8801 to 8900

Table 2.191: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8801

\begin{align*} 3 {y^{\prime \prime }}^{2}-y^{\prime \prime \prime } y^{\prime }-y^{\prime \prime } {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.773

8802

\begin{align*} y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.516

8803

\begin{align*} x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.398

8804

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=4 \,{\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.127

8805

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=3 \sin \left (t \right )-5 \cos \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.990

8806

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=g \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.291

8807

\begin{align*} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t}&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.332

8808

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.280

8809

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y&=f \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.414

8810

\begin{align*} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.315

8811

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

8812

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

8813

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.357

8814

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=2 \sin \left (3 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.138

8815

\begin{align*} 4 y+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

8816

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.322

8817

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.262

8818

\begin{align*} y+\sqrt {y^{2}+x^{2}}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.616

8819

\begin{align*} {y^{\prime }}^{2}&=a^{2}-y^{2} \\ \end{align*}

[_quadrature]

0.527

8820

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.336

8821

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.212

8822

\begin{align*} \left (y^{2} x^{2}+1\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.737

8823

\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.562

8824

\begin{align*} \frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘]]

19.196

8825

\begin{align*} \phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right )&=0 \\ \end{align*}

[_Bernoulli]

4.580

8826

\begin{align*} u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.185

8827

\begin{align*} \left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right )&=\frac {\cos \left (2 \theta \right )}{2}+1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

0.980

8828

\begin{align*} a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.655

8829

\begin{align*} a^{2} y^{\prime \prime \prime \prime }&=y^{\prime \prime } \\ \end{align*}

[[_high_order, _missing_x]]

0.045

8830

\begin{align*} y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\ \end{align*}

[_separable]

0.073

8831

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.794

8832

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.250

8833

\begin{align*} \left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.579

8834

\begin{align*} \left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (1+k \right ) \eta &=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

91.349

8835

\begin{align*} x^{2}+y^{2}-2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.272

8836

\begin{align*} x^{2}-y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.208

8837

\begin{align*} -y+y^{\prime } x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.335

8838

\begin{align*} -y+y^{\prime } x&=x \sqrt {x^{2}-y^{2}}\, y^{\prime } \\ \end{align*}

[‘y=_G(x,y’)‘]

2.195

8839

\begin{align*} x +y^{\prime } y+y-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.492

8840

\begin{align*} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.373

8841

\begin{align*} x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.378

8842

\begin{align*} x_{1}^{\prime }&=x_{1}+3 x_{2} \\ x_{2}^{\prime }&=5 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.350

8843

\begin{align*} x_{1}^{\prime }&=-x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.339

8844

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}+2 x_{2} \\ \end{align*}

system_of_ODEs

0.500

8845

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.332

8846

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\ \end{align*}

system_of_ODEs

0.737

8847

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=16 x_{1}-5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.365

8848

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=3 x_{1}-4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.383

8849

\begin{align*} x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.336

8850

\begin{align*} x_{1}^{\prime }&=-x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.323

8851

\begin{align*} x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.332

8852

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.364

8853

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-8 \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 \\ \end{align*}

system_of_ODEs

0.500

8854

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}-8 \\ x_{2}^{\prime }&=x_{1}+x_{2}+3 \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.509

8855

\begin{align*} y^{\prime }&={\mathrm e}^{3 x}+\sin \left (x \right ) \\ \end{align*}

[_quadrature]

0.224

8856

\begin{align*} y^{\prime \prime }&=2+x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.016

8857

\begin{align*} y^{\prime \prime \prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _quadrature]]

0.085

8858

\begin{align*} y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}

[_separable]

2.408

8859

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[_linear]

2.589

8860

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.207

8861

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.007

8862

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.275

8863

\begin{align*} y^{\prime }+5 y&=2 \\ \end{align*}

[_quadrature]

0.363

8864

\begin{align*} y^{\prime \prime }&=1+3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.039

8865

\begin{align*} y^{\prime }&=k y \\ \end{align*}

[_quadrature]

0.478

8866

\begin{align*} y^{\prime }-2 y&=1 \\ \end{align*}

[_quadrature]

0.352

8867

\begin{align*} y^{\prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.257

8868

\begin{align*} y^{\prime }-2 y&=x^{2}+x \\ \end{align*}

[[_linear, ‘class A‘]]

2.080

8869

\begin{align*} y+3 y^{\prime }&=2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_linear, ‘class A‘]]

1.352

8870

\begin{align*} y^{\prime }+3 y&={\mathrm e}^{i x} \\ \end{align*}

[[_linear, ‘class A‘]]

25.819

8871

\begin{align*} y^{\prime }+i y&=x \\ \end{align*}

[[_linear, ‘class A‘]]

0.401

8872

\begin{align*} L y^{\prime }+R y&=E \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.038

8873

\begin{align*} L y^{\prime }+R y&=E \sin \left (\omega x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.632

8874

\begin{align*} L y^{\prime }+R y&=E \,{\mathrm e}^{i \omega x} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

4.535

8875

\begin{align*} y^{\prime }+a y&=b \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.032

8876

\begin{align*} y^{\prime }+2 y x&=x \\ \end{align*}

[_separable]

2.203

8877

\begin{align*} y^{\prime } x +y&=3 x^{3}-1 \\ \end{align*}

[_linear]

2.122

8878

\begin{align*} y^{\prime }+{\mathrm e}^{x} y&=3 \,{\mathrm e}^{x} \\ \end{align*}

[_separable]

2.418

8879

\begin{align*} y^{\prime }-\tan \left (x \right ) y&={\mathrm e}^{\sin \left (x \right )} \\ \end{align*}

[_linear]

2.500

8880

\begin{align*} y^{\prime }+2 y x&=x \,{\mathrm e}^{-x^{2}} \\ \end{align*}

[_linear]

4.342

8881

\begin{align*} y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\ y \left (\pi \right ) &= \pi \\ \end{align*}

[_linear]

2.631

8882

\begin{align*} x^{2} y^{\prime }+2 y x&=1 \\ \end{align*}

[_linear]

1.269

8883

\begin{align*} 2 y+y^{\prime }&=b \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.990

8884

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.473

8885

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

4.741

8886

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

4.471

8887

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.637

8888

\begin{align*} 3 y^{\prime \prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.881

8889

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.093

8890

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.496

8891

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

8892

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.206

8893

\begin{align*} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

8894

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

8895

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.273

8896

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.961

8897

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.543

8898

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.588

8899

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.545

8900

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.286