| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
3 {y^{\prime \prime }}^{2}-y^{\prime \prime \prime } y^{\prime }-y^{\prime \prime } {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\
\end{align*} |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.516 |
|
| \begin{align*}
x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
0.398 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=4 \,{\mathrm e}^{t} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.127 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=3 \sin \left (t \right )-5 \cos \left (t \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.990 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=g \left (t \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t}&=0 \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x x^{\prime \prime }-{x^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.280 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y&=f \left (x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.315 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=50 \,{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.379 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=50 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=2 \sin \left (3 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.138 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| \begin{align*}
y+\sqrt {y^{2}+x^{2}}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.616 |
|
| \begin{align*}
{y^{\prime }}^{2}&=a^{2}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.212 |
|
| \begin{align*}
\left (y^{2} x^{2}+1\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| \begin{align*}
2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.562 |
|
| \begin{align*}
\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
19.196 |
|
| \begin{align*}
\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.580 |
|
| \begin{align*}
u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right )&=\frac {\cos \left (2 \theta \right )}{2}+1 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
0.980 |
|
| \begin{align*}
a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\
\end{align*} | [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] | ✓ | ✓ | ✓ | ✗ | 1.655 |
|
| \begin{align*}
a^{2} y^{\prime \prime \prime \prime }&=y^{\prime \prime } \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.045 |
|
| \begin{align*}
y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.073 |
|
| \begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
2.794 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.250 |
|
| \begin{align*}
\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
97.579 |
|
| \begin{align*}
\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (1+k \right ) \eta &=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
91.349 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.272 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.208 |
|
| \begin{align*}
-y+y^{\prime } x&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.335 |
|
| \begin{align*}
-y+y^{\prime } x&=x \sqrt {x^{2}-y^{2}}\, y^{\prime } \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
2.195 |
|
| \begin{align*}
x +y^{\prime } y+y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.492 |
|
| \begin{align*}
y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.373 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+3 x_{2} \\
x_{2}^{\prime }&=5 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+3 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}+2 x_{2} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.500 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\
x_{2}^{\prime }&=x_{1}-2 x_{2}+3 t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.737 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=16 x_{1}-5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=3 x_{1}-4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+3 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-18 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-9 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-8 \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-8 \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }&=2+x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.016 |
|
| \begin{align*}
y^{\prime \prime \prime }&=x^{2} \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.085 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.408 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.207 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.007 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.275 |
|
| \begin{align*}
y^{\prime }+5 y&=2 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.363 |
|
| \begin{align*}
y^{\prime \prime }&=1+3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime }-2 y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime }+y&={\mathrm e}^{x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.257 |
|
| \begin{align*}
y^{\prime }-2 y&=x^{2}+x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.080 |
|
| \begin{align*}
y+3 y^{\prime }&=2 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
y^{\prime }+3 y&={\mathrm e}^{i x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
25.819 |
|
| \begin{align*}
y^{\prime }+i y&=x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
L y^{\prime }+R y&=E \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.038 |
|
| \begin{align*}
L y^{\prime }+R y&=E \sin \left (\omega x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.632 |
|
| \begin{align*}
L y^{\prime }+R y&=E \,{\mathrm e}^{i \omega x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.535 |
|
| \begin{align*}
y^{\prime }+a y&=b \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.032 |
|
| \begin{align*}
y^{\prime }+2 y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.203 |
|
| \begin{align*}
y^{\prime } x +y&=3 x^{3}-1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.122 |
|
| \begin{align*}
y^{\prime }+{\mathrm e}^{x} y&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&={\mathrm e}^{\sin \left (x \right )} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.500 |
|
| \begin{align*}
y^{\prime }+2 y x&=x \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.342 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\
y \left (\pi \right ) &= \pi \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.631 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=1 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.269 |
|
| \begin{align*}
2 y+y^{\prime }&=b \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| \begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
4.741 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
4.471 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.637 |
|
| \begin{align*}
3 y^{\prime \prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime \prime }+2 i y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.588 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.286 |
|