| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
1.489 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.239 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.573 |
|
| \begin{align*}
y^{\prime } y&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+x}{y-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.631 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.643 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2}-4 x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.261 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.407 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.207 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.833 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.201 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 2.786 |
|
| \begin{align*}
y^{\prime }&=\frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.777 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y+2}{x +y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.180 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +3 y+1}{x -2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
16.981 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+1}{2 x +2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.319 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x +y-1\right )^{2}}{2 \left (2+x \right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.434 |
|
| \begin{align*}
2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.134 |
|
| \begin{align*}
x^{2}+y x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.100 |
|
| \begin{align*}
{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
x^{2} y^{3}-x^{3} y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.181 |
|
| \begin{align*}
3 \ln \left (x \right ) x^{2}+x^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| \begin{align*}
2 y^{3}+2+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| \begin{align*}
{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.186 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.215 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.693 |
|
| \begin{align*}
-2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {1}{2 {y^{\prime }}^{2}} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
5.797 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= \beta \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
38.250 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
33.349 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{1} \\
y_{2}^{\prime }&=y_{1}+y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{2} \\
y_{2}^{\prime }&=6 y_{1}+y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y_{1}^{\prime }&=y_{1}+y_{2} \\
y_{2}^{\prime }&=y_{1}+y_{2}+{\mathrm e}^{3 x} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y_{1}^{\prime }&=3 y_{1}+x y_{3} \\
y_{2}^{\prime }&=y_{2}+x^{3} y_{3} \\
y_{3}^{\prime }&=2 x y_{1}-y_{2}+{\mathrm e}^{x} y_{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.046 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.293 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.045 |
|
| \begin{align*}
y^{\prime } y&={\mathrm e}^{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.606 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.850 |
|
| \begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {1-y^{2} x^{2}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
3.710 |
|
| \begin{align*}
y^{\prime } x&=y+y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.605 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.534 |
|
| \begin{align*}
y^{\prime } x +y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.502 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.336 |
|
| \begin{align*}
\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime }&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| \begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.280 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
\left (x^{2}-3 x +2\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x \left (x^{2}-4\right ) y^{\prime }&=1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime }&=2 x^{2}+x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime }&=2 y x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y^{2}}{1-x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.951 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.049 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.726 |
|
| \begin{align*}
y^{\prime }&=4 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
y \ln \left (y\right )-y^{\prime } x&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.291 |
|
| \begin{align*}
y^{\prime } x&=\left (-4 x^{2}+1\right ) \tan \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.183 |
|
| \begin{align*}
y^{\prime } \sin \left (y\right )&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.615 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.649 |
|
| \begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| \begin{align*}
x y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.800 |
|
| \begin{align*}
y^{\prime } y&=x +1 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.916 |
|
| \begin{align*}
x^{2} y^{\prime }&=y \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.658 |
|
| \begin{align*}
\frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| \begin{align*}
y^{2} y^{\prime }&=2+x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.164 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime }&=-x^{2}+1 \\
y \left (-1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.737 |
|
| \begin{align*}
\frac {y^{\prime \prime }}{y^{\prime }}&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.727 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=x \left (x +1\right ) \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
4.947 |
|
| \begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.064 |
|