2.2.88 Problems 8701 to 8800

Table 2.189: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8701

\begin{align*} y+\sqrt {y x}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.445

8702

\begin{align*} y^{\prime } x -\sqrt {x^{2}-y^{2}}-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

27.450

8703

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.557

8704

\begin{align*} x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.288

8705

\begin{align*} -y+y^{\prime } x&=y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.164

8706

\begin{align*} y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.697

8707

\begin{align*} x^{2}+y x +y^{2}&=x^{2} y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.427

8708

\begin{align*} \frac {1}{x^{2}-y x +y^{2}}&=\frac {y^{\prime }}{2 y^{2}-y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

38.271

8709

\begin{align*} y^{\prime }&=\frac {2 x y}{3 x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.325

8710

\begin{align*} y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.289

8711

\begin{align*} y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.720

8712

\begin{align*} \left (2 \sqrt {y x}-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

13.145

8713

\begin{align*} y^{\prime } x&=y \ln \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.070

8714

\begin{align*} y^{\prime } \left (y^{\prime }+y\right )&=x \left (x +y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.276

8715

\begin{align*} \left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

54.496

8716

\begin{align*} x^{2} {y^{\prime }}^{2}-3 x y^{\prime } y+2 y^{2}&=0 \\ \end{align*}

[_separable]

0.148

8717

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.908

8718

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.495

8719

\begin{align*} y^{\prime }+\frac {x +2 y}{x}&=0 \\ \end{align*}

[_linear]

3.796

8720

\begin{align*} y^{\prime }&=\frac {y}{x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.290

8721

\begin{align*} y^{\prime } x&=x +\frac {y}{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

11.578

8722

\begin{align*} y^{\prime }&=\frac {x +y-2}{y-x -4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.463

8723

\begin{align*} 2 x -4 y+6+\left (x +y-2\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

21.205

8724

\begin{align*} y^{\prime }&=\frac {2 y-x +5}{2 x -y-4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.027

8725

\begin{align*} y^{\prime }&=-\frac {4 x +3 y+15}{2 x +y+7} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

37.950

8726

\begin{align*} y^{\prime }&=\frac {x +3 y-5}{x -y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.402

8727

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

2.768

8728

\begin{align*} 2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.958

8729

\begin{align*} x -y-1+\left (y-x +2\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.928

8730

\begin{align*} \left (x +4 y\right ) y^{\prime }&=2 x +3 y-5 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.180

8731

\begin{align*} y+2&=\left (2 x +y-4\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.169

8732

\begin{align*} \left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

7.491

8733

\begin{align*} y^{\prime }&=\frac {x -2 y+5}{-4-2 x +y} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.997

8734

\begin{align*} y^{\prime }&=\frac {3 x -y+1}{2 x +y+4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

43.230

8735

\begin{align*} 2 y^{\prime } x +\left (1+x^{2} y^{4}\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.920

8736

\begin{align*} 2 x \left (x -y^{2}\right ) y^{\prime }+y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.394

8737

\begin{align*} x^{3} \left (y^{\prime }-x \right )&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

0.230

8738

\begin{align*} 2 x^{2} y^{\prime }&=y^{3}+y x \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.329

8739

\begin{align*} y+x \left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.303

8740

\begin{align*} 2 y^{\prime }+x&=4 \sqrt {y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Chini]

0.764

8741

\begin{align*} y^{\prime }&=y^{2}-\frac {2}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

0.431

8742

\begin{align*} 2 y^{\prime } x +y&=y^{2} \sqrt {x -y^{2} x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.766

8743

\begin{align*} \frac {2 x y^{\prime } y}{3}&=\sqrt {x^{6}-y^{4}}+y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.455

8744

\begin{align*} 2 y+\left (x^{2} y+1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.286

8745

\begin{align*} x \left (-y x +1\right ) y^{\prime }+\left (y x +1\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.323

8746

\begin{align*} \left (y^{2} x^{2}+1\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.436

8747

\begin{align*} \left (x^{2}-y^{4}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.398

8748

\begin{align*} y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.625

8749

\begin{align*} x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

2.073

8750

\begin{align*} \frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.938

8751

\begin{align*} 3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.108

8752

\begin{align*} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.122

8753

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.238

8754

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.471

8755

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.822

8756

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.941

8757

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.296

8758

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

8759

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.632

8760

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime } x +4 x^{2} y^{\prime }+8 x^{3} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

8761

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.443

8762

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.137

8763

\begin{align*} x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.243

8764

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.713

8765

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=2 x \,{\mathrm e}^{x}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.164

8766

\begin{align*} y^{\prime \prime } x +y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.213

8767

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.007

8768

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime }&=\cos \left (\frac {1}{x}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.096

8769

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.624

8770

\begin{align*} 2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.855

8771

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

88.898

8772

\begin{align*} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.852

8773

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.877

8774

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4}&=-\frac {x^{2}}{2}+\frac {1}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.339

8775

\begin{align*} \left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (-\sin \left (x \right )+\cos \left (x \right )\right ) y&=\left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.147

8776

\begin{align*} \left (-\sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y&=\left (-\sin \left (x \right )+\cos \left (x \right )\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.480

8777

\begin{align*} y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.790

8778

\begin{align*} y^{\prime }&=\frac {x^{2}}{1-y^{2}} \\ \end{align*}

[_separable]

1.460

8779

\begin{align*} y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

2.691

8780

\begin{align*} y^{\prime } x -2 \sqrt {y x}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.144

8781

\begin{align*} y^{\prime }&=\frac {x +y-1}{x -y+3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.757

8782

\begin{align*} {\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

2.841

8783

\begin{align*} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.131

8784

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.483

8785

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.658

8786

\begin{align*} y^{\prime }&=\frac {y}{2 x}+\frac {x^{2}}{2 y} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.265

8787

\begin{align*} y^{\prime }&=-\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \\ \end{align*}

[_separable]

3.972

8788

\begin{align*} y^{\prime }&=-\frac {y}{t}-1-y^{2} \\ \end{align*}

[_rational, _Riccati]

2.985

8789

\begin{align*} y^{\prime } y+x&=a {y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

0.211

8790

\begin{align*} {y^{\prime }}^{2}-a^{2} y^{2}&=0 \\ \end{align*}

[_quadrature]

0.260

8791

\begin{align*} {y^{\prime }}^{2}&=4 x^{2} \\ \end{align*}

[_quadrature]

0.152

8792

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

8793

\begin{align*} s^{\prime \prime }+2 s^{\prime }+s&=0 \\ s \left (0\right ) &= 4 \\ s^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

8794

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

8795

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=1+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

8796

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

8797

\begin{align*} y^{\prime \prime }+y&=4 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

8798

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

8799

\begin{align*} p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.026

8800

\begin{align*} \sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u&=0 \\ \end{align*}

[_Lienard]

0.512