| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 \left (x +1\right ) x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✗ |
0.641 |
|
| \begin{align*}
y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
1.805 |
|
| \begin{align*}
9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
4 y^{\prime \prime } x +4 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+36 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✗ |
1.842 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.666 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.494 |
|
| \begin{align*}
16 \left (x +1\right )^{2} y^{\prime \prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.454 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✗ |
0.635 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). | [_Laguerre] | ✓ | ✓ | ✓ | ✓ | 0.738 |
|
| \begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y}{4 x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.715 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime }+\frac {26 y}{5}&=\frac {97 \sin \left (2 t \right )}{5} \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime }+2 y&=0 \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.115 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 11 \\
y^{\prime }\left (0\right ) &= 28 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=10 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y}{4}&=0 \\
y \left (0\right ) &= 12 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=29 \cos \left (2 t \right ) \\
y \left (0\right ) &= {\frac {16}{5}} \\
y^{\prime }\left (0\right ) &= {\frac {31}{5}} \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=21 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= {\frac {7}{2}} \\
y^{\prime }\left (0\right ) &= -10 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= {\frac {81}{10}} \\
y^{\prime }\left (0\right ) &= {\frac {39}{10}} \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=6 t -8 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y}{25}&=\frac {t^{2}}{50} \\
y \left (0\right ) &= -25 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.164 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4}&=9 t^{3}+64 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {63}{2}} \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (4\right ) &= -3 \\
y^{\prime }\left (4\right ) &= -17 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime }-6 y&=0 \\
y \left (-1\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.141 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=50 t -100 \\
y \left (2\right ) &= -4 \\
y^{\prime }\left (2\right ) &= 14 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -3} \\
y \left (\frac {3}{2}\right ) &= 4 \\
y^{\prime }\left (\frac {3}{2}\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.125 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=144 t^{2} \\
y \left (0\right ) &= {\frac {19}{12}} \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.204 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.488 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=\left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.800 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.265 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.372 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \\
y \left (1\right ) &= 1+\cos \left (2\right ) \\
y^{\prime }\left (1\right ) &= 4-2 \sin \left (2\right ) \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\delta \left (t -\pi \right ) \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=4 \delta \left (t -3 \pi \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| \begin{align*}
4 y^{\prime \prime }+24 y^{\prime }+37 y&=17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.437 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✗ |
✓ |
3.355 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{2}\right )+\cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✗ |
✓ |
1.703 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=25 t -100 \delta \left (t -\pi \right ) \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.668 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.039 |
|
| \begin{align*}
y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.371 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.812 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.753 |
|
| \begin{align*}
x y^{\prime } y&=\sqrt {1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.050 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| \begin{align*}
2 x^{2} y y^{\prime }+y^{2}&=2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| \begin{align*}
y^{\prime }-x y^{2}&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.523 |
|
| \begin{align*}
\left (1+z^{\prime }\right ) {\mathrm e}^{-z}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.034 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.293 |
|
| \begin{align*}
{\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.069 |
|
| \begin{align*}
\frac {y}{x -1}+\frac {x y^{\prime }}{1+y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.096 |
|
| \begin{align*}
x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| \begin{align*}
\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.152 |
|
| \begin{align*}
\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.463 |
|
| \begin{align*}
2 x \sqrt {1-y^{2}}+y^{\prime } y&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.447 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right ) \left (x +1\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.306 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{\sqrt {x}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.644 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.092 |
|
| \begin{align*}
z^{\prime }&=10^{x +z} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.363 |
|
| \begin{align*}
x^{\prime }+t&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
y^{\prime }-y&=2 x -3 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.053 |
|
| \begin{align*}
\left (x +2 y\right ) y^{\prime }&=1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| \begin{align*}
y^{\prime }+y&=2 x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y-1\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.739 |
|
| \begin{align*}
y^{\prime }+\sin \left (x +y\right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.317 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {2 x +y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| \begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.864 |
|
| \begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.062 |
|
| \begin{align*}
\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.482 |
|
| \begin{align*}
y-2 y x +x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.799 |
|
| \begin{align*}
2 y^{\prime } x&=\left (2 x^{2}-y^{2}\right ) y \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.632 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.352 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.832 |
|
| \begin{align*}
-y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.450 |
|
| \begin{align*}
y^{\prime } x&=y-{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.298 |
|
| \begin{align*}
-y+y^{\prime } x&=\left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.084 |
|
| \begin{align*}
y^{\prime } x&=y \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.371 |
|