2.2.87 Problems 8601 to 8700

Table 2.187: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8601

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.648

8602

\begin{align*} \left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 \left (x +1\right ) x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.569

8603

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.641

8604

\begin{align*} y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

1.805

8605

\begin{align*} 9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.578

8606

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.253

8607

\begin{align*} 4 y^{\prime \prime } x +4 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.592

8608

\begin{align*} y^{\prime \prime } x +y^{\prime }+36 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.598

8609

\begin{align*} y^{\prime \prime }+k^{2} x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.303

8610

\begin{align*} y^{\prime \prime }+k^{2} x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.288

8611

\begin{align*} y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

1.842

8612

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.303

8613

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.666

8614

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.494

8615

\begin{align*} 16 \left (x +1\right )^{2} y^{\prime \prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.454

8616

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.635

8617

\begin{align*} x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.681

8618

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.738

8619

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.599

8620

\begin{align*} y^{\prime \prime }+\frac {y}{4 x}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.715

8621

\begin{align*} y^{\prime \prime } x +y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.484

8622

\begin{align*} y^{\prime }+\frac {26 y}{5}&=\frac {97 \sin \left (2 t \right )}{5} \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.338

8623

\begin{align*} y^{\prime }+2 y&=0 \\ y \left (0\right ) &= {\frac {3}{2}} \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.115

8624

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 11 \\ y^{\prime }\left (0\right ) &= 28 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.175

8625

\begin{align*} y^{\prime \prime }+9 y&=10 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.234

8626

\begin{align*} y^{\prime \prime }-\frac {y}{4}&=0 \\ y \left (0\right ) &= 12 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.156

8627

\begin{align*} y^{\prime \prime }-6 y^{\prime }+5 y&=29 \cos \left (2 t \right ) \\ y \left (0\right ) &= {\frac {16}{5}} \\ y^{\prime }\left (0\right ) &= {\frac {31}{5}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.260

8628

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=21 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= {\frac {7}{2}} \\ y^{\prime }\left (0\right ) &= -10 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.219

8629

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= {\frac {81}{10}} \\ y^{\prime }\left (0\right ) &= {\frac {39}{10}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.173

8630

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=6 t -8 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.200

8631

\begin{align*} y^{\prime \prime }+\frac {y}{25}&=\frac {t^{2}}{50} \\ y \left (0\right ) &= -25 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.164

8632

\begin{align*} y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4}&=9 t^{3}+64 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {63}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.244

8633

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (4\right ) &= -3 \\ y^{\prime }\left (4\right ) &= -17 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.270

8634

\begin{align*} y^{\prime }-6 y&=0 \\ y \left (-1\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.141

8635

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=50 t -100 \\ y \left (2\right ) &= -4 \\ y^{\prime }\left (2\right ) &= 14 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.351

8636

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -3} \\ y \left (\frac {3}{2}\right ) &= 4 \\ y^{\prime }\left (\frac {3}{2}\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.301

8637

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.125

8638

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.226

8639

\begin{align*} y^{\prime \prime }+10 y^{\prime }+24 y&=144 t^{2} \\ y \left (0\right ) &= {\frac {19}{12}} \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.179

8640

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.204

8641

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.488

8642

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=\left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.800

8643

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.943

8644

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.265

8645

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (\pi \right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 2 \,{\mathrm e}^{-\pi }-2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

2.372

8646

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \\ y \left (1\right ) &= 1+\cos \left (2\right ) \\ y^{\prime }\left (1\right ) &= 4-2 \sin \left (2\right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

8647

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.579

8648

\begin{align*} y^{\prime \prime }+16 y&=4 \delta \left (t -3 \pi \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.698

8649

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

8650

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.030

8651

\begin{align*} 4 y^{\prime \prime }+24 y^{\prime }+37 y&=17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.437

8652

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.089

8653

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

3.355

8654

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\delta \left (t -\frac {\pi }{2}\right )+\cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.703

8655

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.988

8656

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=25 t -100 \delta \left (t -\pi \right ) \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.668

8657

\begin{align*} y^{\prime }&=\frac {x^{2}}{y} \\ \end{align*}

[_separable]

3.300

8658

\begin{align*} y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\ \end{align*}

[_separable]

2.039

8659

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

[_separable]

2.371

8660

\begin{align*} y^{\prime } x&=\sqrt {1-y^{2}} \\ \end{align*}

[_separable]

4.812

8661

\begin{align*} y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\ \end{align*}

[_separable]

1.753

8662

\begin{align*} x y^{\prime } y&=\sqrt {1+y^{2}} \\ \end{align*}

[_separable]

5.273

8663

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.050

8664

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_quadrature]

1.937

8665

\begin{align*} y^{\prime } x +y&=y^{2} \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

3.980

8666

\begin{align*} 2 x^{2} y y^{\prime }+y^{2}&=2 \\ \end{align*}

[_separable]

3.814

8667

\begin{align*} y^{\prime }-x y^{2}&=2 y x \\ \end{align*}

[_separable]

3.523

8668

\begin{align*} \left (1+z^{\prime }\right ) {\mathrm e}^{-z}&=1 \\ \end{align*}

[_quadrature]

1.034

8669

\begin{align*} y^{\prime }&=\frac {3 x^{2}+4 x +2}{-2+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

3.293

8670

\begin{align*} {\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.069

8671

\begin{align*} \frac {y}{x -1}+\frac {x y^{\prime }}{1+y}&=0 \\ \end{align*}

[_separable]

5.096

8672

\begin{align*} x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.615

8673

\begin{align*} \frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}}&=0 \\ \end{align*}

[_separable]

12.152

8674

\begin{align*} \frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}}&=0 \\ \end{align*}

[_separable]

7.463

8675

\begin{align*} 2 x \sqrt {1-y^{2}}+y^{\prime } y&=0 \\ \end{align*}

[_separable]

3.447

8676

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (x +1\right ) \\ \end{align*}

[_separable]

2.306

8677

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ \end{align*}

[_separable]

1.766

8678

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{\sqrt {x}} \\ \end{align*}

[_separable]

10.644

8679

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{x} \\ \end{align*}

[_separable]

4.092

8680

\begin{align*} z^{\prime }&=10^{x +z} \\ \end{align*}

[_separable]

2.363

8681

\begin{align*} x^{\prime }+t&=1 \\ \end{align*}

[_quadrature]

0.250

8682

\begin{align*} y^{\prime }&=\cos \left (x -y\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.790

8683

\begin{align*} y^{\prime }-y&=2 x -3 \\ \end{align*}

[[_linear, ‘class A‘]]

1.053

8684

\begin{align*} \left (x +2 y\right ) y^{\prime }&=1 \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6.010

8685

\begin{align*} y^{\prime }+y&=2 x +1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.096

8686

\begin{align*} y^{\prime }&=\cos \left (x -y-1\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.739

8687

\begin{align*} y^{\prime }+\sin \left (x +y\right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

3.317

8688

\begin{align*} y^{\prime }&=2 \sqrt {2 x +y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.467

8689

\begin{align*} y^{\prime }&=\left (x +y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

3.864

8690

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

4.062

8691

\begin{align*} \left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.527

8692

\begin{align*} \left (x +y\right ) y^{\prime }+x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.482

8693

\begin{align*} y-2 y x +x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

2.799

8694

\begin{align*} 2 y^{\prime } x&=\left (2 x^{2}-y^{2}\right ) y \\ \end{align*}

[_rational, _Bernoulli]

2.632

8695

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.352

8696

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime }&=2 y x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.832

8697

\begin{align*} -y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.450

8698

\begin{align*} y^{\prime } x&=y-{\mathrm e}^{\frac {y}{x}} x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.298

8699

\begin{align*} -y+y^{\prime } x&=\left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

7.084

8700

\begin{align*} y^{\prime } x&=y \cos \left (\frac {y}{x}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.371