2.2.81 Problems 8001 to 8100

Table 2.175: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8001

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

8002

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.117

8003

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

8004

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

8005

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

8006

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=x^{2}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.353

8007

\begin{align*} y^{\prime \prime }-9 y&=x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

8008

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }&=x^{2}+4 x +8 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.095

8009

\begin{align*} y^{\prime \prime }+y&=-2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

8010

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y&=2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.317

8011

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

8012

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

8013

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

8014

\begin{align*} y^{\prime \prime \prime \prime }-y&=\sin \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.101

8015

\begin{align*} y^{\prime \prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.094

8016

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

8017

\begin{align*} y^{\prime \prime }+5 y&=\cos \left (\sqrt {5}\, x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

8018

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.835

8019

\begin{align*} y^{\prime \prime }-y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.218

8020

\begin{align*} y^{\prime \prime }+2 y&=x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.943

8021

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

8022

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

8023

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

8024

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

8025

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x +\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.289

8026

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.997

8027

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }&=x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.295

8028

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=3 x^{4} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.254

8029

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.394

8030

\begin{align*} -12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=6 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.839

8031

\begin{align*} y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[_Laguerre]

0.263

8032

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.954

8033

\begin{align*} \left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.924

8034

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (2+x \right ) y&=\left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

8035

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

8036

\begin{align*} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y&=\left (-x^{2}+6\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

8037

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.221

8038

\begin{align*} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y&=\left (x^{2}-x +1\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.371

8039

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.674

8040

\begin{align*} x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y&=\frac {1}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.431

8041

\begin{align*} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.321

8042

\begin{align*} y^{\prime \prime } x -3 y^{\prime }+\frac {3 y}{x}&=2+x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.456

8043

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y&=\left (3 x +2\right ) {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.726

8044

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.331

8045

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+4 y x&=4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

8046

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\frac {-x^{2}+1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.931

8047

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.269

8048

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {2}{x^{3}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.750

8049

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.931

8050

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.102

8051

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.362

8052

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.392

8053

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.946

8054

\begin{align*} \left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 y^{\prime } x -4 y&=8 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

8055

\begin{align*} \left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.286

8056

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.932

8057

\begin{align*} \left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime }&=2 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.402

8058

\begin{align*} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right )&=x \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.043

8059

\begin{align*} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right )&=-\frac {2}{x} \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.065

8060

\begin{align*} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y^{\prime } y&={\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.059

8061

\begin{align*} 2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.403

8062

\begin{align*} x^{\prime }-y^{\prime }+y&=-{\mathrm e}^{t} \\ x+y^{\prime }-y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.587

8063

\begin{align*} x^{\prime }+2 x+y^{\prime }+y&=t \\ 5 x+y^{\prime }+3 y&=t^{2} \\ \end{align*}

system_of_ODEs

0.691

8064

\begin{align*} x^{\prime }+x+2 y^{\prime }+7 y&={\mathrm e}^{t}+2 \\ -2 x+y^{\prime }+3 y&={\mathrm e}^{t}-1 \\ \end{align*}

system_of_ODEs

1.197

8065

\begin{align*} x^{\prime }-x+y^{\prime }+3 y&={\mathrm e}^{-t}-1 \\ x^{\prime }+2 x+y^{\prime }+3 y&=1+{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.182

8066

\begin{align*} x^{\prime }-x+y^{\prime }+2 y&=1+{\mathrm e}^{t} \\ y^{\prime }+2 y+z^{\prime }+z&={\mathrm e}^{t}+2 \\ x^{\prime }-x+z^{\prime }+z&=3+{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.687

8067

\begin{align*} \left (1-x \right ) y^{\prime }&=x^{2}-y \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.220

8068

\begin{align*} y^{\prime } x&=1-x +2 y \\ \end{align*}
Series expansion around \(x=1\).

[_linear]

0.248

8069

\begin{align*} y^{\prime } x&=1-x +2 y \\ \end{align*}

[_linear]

1.823

8070

\begin{align*} y^{\prime }&=2 x^{2}+3 y \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.247

8071

\begin{align*} \left (x +1\right ) y^{\prime }&=x^{2}-2 x +y \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.205

8072

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.210

8073

\begin{align*} y^{\prime \prime }+2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.210

8074

\begin{align*} y^{\prime \prime }-y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.250

8075

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.435

8076

\begin{align*} y^{\prime \prime }+x^{2} y&=x^{2}+x +1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.237

8077

\begin{align*} 2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.650

8078

\begin{align*} 4 y^{\prime \prime } x +2 \left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.695

8079

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.587

8080

\begin{align*} y^{\prime \prime } x +y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.327

8081

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.369

8082

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

1.080

8083

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.619

8084

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.704

8085

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }-y&=x +1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.896

8086

\begin{align*} 2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_Emden, _Fowler]]

0.724

8087

\begin{align*} x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_2nd_order, _with_linear_symmetries]]

0.617

8088

\begin{align*} z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.287

8089

\begin{align*} x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.835

8090

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.644

8091

\begin{align*} x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.040

8092

\begin{align*} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.040

8093

\begin{align*} \left (-x +3\right ) y-x \left (4-x \right ) y^{\prime }+2 \left (-x +2\right ) x^{2} y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.776

8094

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.439

8095

\begin{align*} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.398

8096

\begin{align*} x^{2} y^{\prime \prime }+4 \left (x +a \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.886

8097

\begin{align*} y^{\prime \prime } x +\left (x^{3}+1\right ) y^{\prime }+b x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.435

8098

\begin{align*} \left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.385

8099

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.247

8100

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.214