| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x -1\right ) y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
x \left (2+x \right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.998 |
|
| \begin{align*}
y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
-y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.367 |
|
| \begin{align*}
2 y^{\prime \prime } x -y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
y^{\prime \prime } x +\left (\frac {1}{2}-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.341 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {9}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.366 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {25}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.359 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime }+y x&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
y^{\prime }+y x&=\frac {1}{x^{3}} \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.262 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+y&=\frac {1}{x^{4}} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.060 |
|
| \begin{align*}
y^{\prime \prime } x -2 y^{\prime }+y&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
1.195 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[_linear] |
✗ |
✗ |
✓ |
✗ |
0.201 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }+2 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
y^{\prime \prime }-y x&=\frac {1}{1-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.350 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.552 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.537 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
2 y^{\prime \prime } x +y^{\prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.405 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.578 |
|
| \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.356 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.102 |
|
| \begin{align*}
y^{\prime \prime } x +x^{3} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.155 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime } x -{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.198 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.070 |
|
| \begin{align*}
y^{\prime \prime } x +x^{5} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.668 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }-y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.540 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.296 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
6.380 |
|
| \begin{align*}
x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| \begin{align*}
t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.043 |
|
| \begin{align*}
u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
1.682 |
|
| \begin{align*}
R^{\prime \prime }&=-\frac {k}{R^{2}} \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] | ✓ | ✓ | ✓ | ✓ | 56.555 |
|
| \begin{align*}
x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
13.215 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )&=x +y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.807 |
|
| \begin{align*}
\sin \left (x^{\prime }\right )+y^{3} x&=\sin \left (y \right ) \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
25.964 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }&=y-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.097 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.856 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.996 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.829 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.453 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} | [[_3rd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.263 |
|
| \begin{align*}
y^{\prime } x -3 y x&=1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.303 |
|
| \begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=10 \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.218 |
|
| \begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.288 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
5 y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| \begin{align*}
x^{2} y^{\prime \prime \prime }-3 y^{\prime \prime } x +3 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.705 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
\left (y-1\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
{y^{\prime }}^{2}&=4 y \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.443 |
|
| \begin{align*}
{y^{\prime }}^{2}&=9-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime } y+\sqrt {16-y^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.745 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime }+4 y&=4 x -1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.294 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=5 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.106 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.331 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|