| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
3 x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| \begin{align*}
y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
2 y-3 x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.349 |
|
| \begin{align*}
y+x \left (x^{2} y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.252 |
|
| \begin{align*}
y+x^{3} y+2 x^{2}+\left (x +4 y^{4} x +8 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
0.289 |
|
| \begin{align*}
-y-{\mathrm e}^{x} x^{2}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| \begin{align*}
1+y^{2}&=\left (x^{2}+x \right ) y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.914 |
|
| \begin{align*}
2 y-x^{3}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.142 |
|
| \begin{align*}
y+\left (y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| \begin{align*}
3 y^{3}-y x -\left (x^{2}+6 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
3 y^{2} x^{2}+4 \left (x^{3} y-3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.204 |
|
| \begin{align*}
y \left (x +y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
0.667 |
|
| \begin{align*}
y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
-y+y^{\prime } x&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 0.110 |
|
| \begin{align*}
y^{\prime }+y&=2 x +2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.530 |
|
| \begin{align*}
y^{\prime }-y&=y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| \begin{align*}
-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.539 |
|
| \begin{align*}
i^{\prime }-6 i&=10 \sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.907 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} {\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.694 |
|
| \begin{align*}
y+\left (y x +x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.108 |
|
| \begin{align*}
\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime }&=2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.099 |
|
| \begin{align*}
y^{\prime } x +y-x^{3} y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.390 |
|
| \begin{align*}
r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right )&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.263 |
|
| \begin{align*}
y \left (1+y^{2}\right )&=2 \left (1-2 x y^{2}\right ) y^{\prime } \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.561 |
|
| \begin{align*}
y^{\prime } y-x y^{2}+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.474 |
|
| \begin{align*}
\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
4.347 |
|
| \begin{align*}
2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.924 |
|
| \begin{align*}
y^{\prime } x&=y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
14.019 |
|
| \begin{align*}
2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
12.672 |
|
| \begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✓ |
6.915 |
|
| \begin{align*}
2 x y^{5}-y+2 y^{\prime } x&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 5.606 |
|
| \begin{align*}
1+\sin \left (y\right )&=\left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✗ |
4.317 |
|
| \begin{align*}
y^{\prime } x&=2 y+{\mathrm e}^{x} x^{3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.908 |
|
| \begin{align*}
L i^{\prime }+R i&=E \sin \left (2 t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| \begin{align*}
x^{2} y^{\prime } \cos \left (y\right )&=2 x \sin \left (y\right )-1 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✗ |
2.920 |
|
| \begin{align*}
4 x^{2} y y^{\prime }&=3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \\
\end{align*} |
[_rational] |
✗ |
✓ |
✓ |
✓ |
13.694 |
|
| \begin{align*}
x y^{3}-y^{3}-{\mathrm e}^{x} x^{2}+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.090 |
|
| \begin{align*}
y^{\prime }+x \left (x +y\right )&=x^{3} \left (x +y\right )^{3}-1 \\
\end{align*} |
[_Abel] |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| \begin{align*}
y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+x y^{\prime } y-6 y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-\left (y-1\right ) x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
8 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.682 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.754 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
16 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.717 |
|
| \begin{align*}
x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.339 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y-y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 1.456 |
|
| \begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.589 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.991 |
|
| \begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| \begin{align*}
y&=2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.721 |
|
| \begin{align*}
y {y^{\prime }}^{2}-y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.237 |
|
| \begin{align*}
y&=y^{\prime } x -2 {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
0.669 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| \begin{align*}
\left (3 y-1\right )^{2} {y^{\prime }}^{2}&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.417 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.759 |
|
| \begin{align*}
2 y&={y^{\prime }}^{2}+4 y^{\prime } x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.467 |
|
| \begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.477 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2}&=\left (y^{\prime } y+x \right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
69.691 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\
\end{align*} | [[_3rd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.061 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.014 |
|
| \begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=3 x^{4} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.767 |
|
| \begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
7.589 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.705 |
|
| \begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.812 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.053 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\
\end{align*} | [[_3rd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.065 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.092 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }&=5 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.110 |
|
| \begin{align*}
y^{\left (5\right )}-4 y^{\prime \prime \prime }&=5 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.141 |
|
| \begin{align*}
-4 y^{\prime }+y^{\prime \prime \prime }&=x \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.119 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|