2.2.79 Problems 7801 to 7900

Table 2.171: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7801

\begin{align*} y^{\prime }-y&=\sin \left (x \right )+\cos \left (2 x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.296

7802

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x}+1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.141

7803

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sec \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.382

7804

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=\frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.273

7805

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

7806

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

7807

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.576

7808

\begin{align*} t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.243

7809

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x^{4} \\ \end{align*}

[_linear]

3.022

7810

\begin{align*} y^{\prime \prime \prime \prime }&=5 x \\ \end{align*}

[[_high_order, _quadrature]]

0.109

7811

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

7812

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7813

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.290

7814

\begin{align*} y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

7815

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=-3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.129

7816

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.670

7817

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x&={\mathrm e}^{x} x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.563

7818

\begin{align*} y^{\prime }-\frac {y}{x}&=x^{2} \\ \end{align*}

[_linear]

2.395

7819

\begin{align*} 2 y+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.229

7820

\begin{align*} 2 y+y^{\prime }&=2 \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.133

7821

\begin{align*} 2 y+y^{\prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.216

7822

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.129

7823

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

7824

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.233

7825

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.296

7826

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

7827

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.236

7828

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.276

7829

\begin{align*} y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (x -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.964

7830

\begin{align*} y^{\prime \prime \prime }-y&=5 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.329

7831

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.303

7832

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _linear, _nonhomogeneous]]

0.291

7833

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.199

7834

\begin{align*} q^{\prime \prime }+9 q^{\prime }+14 q&=\frac {\sin \left (t \right )}{2} \\ q \left (0\right ) &= 0 \\ q^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.316

7835

\begin{align*} \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.616

7836

\begin{align*} x^{3} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.109

7837

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.278

7838

\begin{align*} y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.376

7839

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.373

7840

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.421

7841

\begin{align*} y^{\prime \prime }+2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.290

7842

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.379

7843

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.277

7844

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +x^{2} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.377

7845

\begin{align*} y^{\prime } x&=2 y \\ \end{align*}

[_separable]

3.133

7846

\begin{align*} y^{\prime } y+x&=0 \\ \end{align*}

[_separable]

5.546

7847

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.150

7848

\begin{align*} 2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

32.855

7849

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

7850

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.922

7851

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.282

7852

\begin{align*} y^{\prime \prime }-y&=4-x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

7853

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

7854

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7855

\begin{align*} 4 y+y^{\prime } x&=0 \\ \end{align*}

[_separable]

3.108

7856

\begin{align*} 1+2 y+\left (-x^{2}+4\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

5.572

7857

\begin{align*} y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

4.369

7858

\begin{align*} 1+y-\left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.574

7859

\begin{align*} x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.497

7860

\begin{align*} x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.228

7861

\begin{align*} y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational]

2.807

7862

\begin{align*} y \sqrt {y^{2}+x^{2}}-x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _dAlembert]

14.703

7863

\begin{align*} x +y+1+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.865

7864

\begin{align*} 1+2 y-\left (4-x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.168

7865

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_separable]

2.152

7866

\begin{align*} x +2 y+\left (2 x +3 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.242

7867

\begin{align*} 2 y^{\prime } x -2 y&=\sqrt {x^{2}+4 y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.149

7868

\begin{align*} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

77.967

7869

\begin{align*} x y^{\prime } y&=\left (1+y\right ) \left (1-x \right ) \\ \end{align*}

[_separable]

3.612

7870

\begin{align*} y^{2}-x^{2}+x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.424

7871

\begin{align*} y \left (2 y x +1\right )+x \left (-y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.259

7872

\begin{align*} 1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.591

7873

\begin{align*} x^{3}+y^{3}+3 y^{2} y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

8.441

7874

\begin{align*} 3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.857

7875

\begin{align*} y^{\prime } x +2 y&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_separable]

3.465

7876

\begin{align*} x y^{\prime } y+x^{2}+y^{2}&=0 \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.454

7877

\begin{align*} \cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\ y \left (0\right ) &= \frac {\pi }{4} \\ \end{align*}

[_separable]

4.169

7878

\begin{align*} y^{2}+y x -y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_rational, _Bernoulli]

2.105

7879

\begin{align*} y^{\prime }&=-2 \left (2 x +3 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

10.306

7880

\begin{align*} x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.634

7881

\begin{align*} x^{2}-y-y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.142

7882

\begin{align*} x^{2}+y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.241

7883

\begin{align*} x +y \cos \left (x \right )+\sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

0.146

7884

\begin{align*} 2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.477

7885

\begin{align*} 4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational]

0.833

7886

\begin{align*} 2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.236

7887

\begin{align*} x \sqrt {y^{2}+x^{2}}-y+\left (y \sqrt {y^{2}+x^{2}}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

0.227

7888

\begin{align*} x +y+1-\left (3-x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.447

7889

\begin{align*} y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

0.312

7890

\begin{align*} 2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

0.295

7891

\begin{align*} y \left (x -2 y\right )-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.247

7892

\begin{align*} x y^{\prime } y+x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.841

7893

\begin{align*} x^{2}+y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6.663

7894

\begin{align*} 1-\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.451

7895

\begin{align*} x +y+1-\left (-3+x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

20.138

7896

\begin{align*} x -x^{2}-y^{2}+y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.550

7897

\begin{align*} 2 y-3 x +y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.170

7898

\begin{align*} x -y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.677

7899

\begin{align*} -y-3 x^{2} \left (y^{2}+x^{2}\right )+y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

0.276

7900

\begin{align*} y-\ln \left (x \right )-y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.199