| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (x y^{2}+x^{3}\right ) y^{\prime }&=2 y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.190 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 y x&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.668 |
|
| \begin{align*}
y^{\prime }+y \tanh \left (x \right )&=2 \sinh \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.900 |
|
| \begin{align*}
y^{\prime } x -2 y&=\cos \left (x \right ) x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.677 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.661 |
|
| \begin{align*}
y^{\prime } x +3 y&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.927 |
|
| \begin{align*}
x \left (y-3\right ) y^{\prime }&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.270 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x^{2} y \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.680 |
|
| \begin{align*}
x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| \begin{align*}
\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.520 |
|
| \begin{align*}
x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.164 |
|
| \begin{align*}
\left (-x +2 y\right ) y^{\prime }&=2 x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.799 |
|
| \begin{align*}
y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
21.784 |
|
| \begin{align*}
x^{3}+y^{3}&=3 y^{2} y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.801 |
|
| \begin{align*}
y-3 x +\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.490 |
|
| \begin{align*}
\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=y^{3}+3 x^{2} y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.165 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{3}+3 x^{2}-2 x \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 0.099 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=\sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.142 |
|
| \begin{align*}
-y+y^{\prime } x&=\cos \left (x \right ) x^{3} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+3 y x&=5 x \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=5 \,{\mathrm e}^{\cos \left (x \right )} \\
y \left (\frac {\pi }{2}\right ) &= -4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
\left (3 x +3 y-4\right ) y^{\prime }&=-x -y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.665 |
|
| \begin{align*}
x -x y^{2}&=\left (x +x^{2} y\right ) y^{\prime } \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.161 |
|
| \begin{align*}
x -y-1+\left (4 y+x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
18.804 |
|
| \begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
77.280 |
|
| \begin{align*}
\left (y x +1\right ) y+x \left (1+y x +y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.535 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime }+y&=y^{4} {\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
2 y^{\prime }+y&=y^{3} \left (x -1\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
y^{\prime }-2 \tan \left (x \right ) y&=y^{2} \tan \left (x \right )^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=y^{3} \sec \left (x \right )^{4} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.077 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=y x +1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.552 |
|
| \begin{align*}
x y^{\prime } y-\left (x +1\right ) \sqrt {y-1}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.918 |
|
| \begin{align*}
y^{\prime }-\cot \left (x \right ) y&=y^{2} \sec \left (x \right )^{2} \\
y \left (\frac {\pi }{4}\right ) &= -1 \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.424 |
|
| \begin{align*}
y+\left (x^{2}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.301 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=\cos \left (x \right )-2 x \sin \left (x \right ) \\
y \left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}+2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.879 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \left (1+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.125 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 x -1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.410 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}-x y^{\prime } y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.940 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.309 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (2 x \right ) \\
y \left (\frac {\pi }{4}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.060 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.789 |
|
| \begin{align*}
y^{\prime }&=\frac {x -2 y+1}{2 x -4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.651 |
|
| \begin{align*}
\left (-x^{3}+1\right ) y^{\prime }+x^{2} y&=x^{2} \left (-x^{3}+1\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.841 |
|
| \begin{align*}
y^{\prime }+x +x y^{2}&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.434 |
|
| \begin{align*}
y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y&=\frac {1}{-x^{2}+1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=\left (x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| \begin{align*}
x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime }&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 5.646 |
|
| \begin{align*}
\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}}&=1 \\
r \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.586 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=5 x^{2}+x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }-y&=2 x -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }-4 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=100 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 \cosh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.330 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.710 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&={\mathrm e}^{-3 t} \\
x \left (0\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=6 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=\sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=3 \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {9}{10}} \\
y^{\prime }\left (0\right ) &= -{\frac {7}{10}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+10 y&=50 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=85 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -20 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{\prime \prime }&=3 \sin \left (x \right )-4 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}&=-48 x \\
x \left (0\right ) &= {\frac {1}{6}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.414 |
|
| \begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=\cos \left (t \right ) \\
x \left (0\right ) &= {\frac {1}{10}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=50 t^{3}-36 t^{2}-63 t +18 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.143 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 0.964 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime }-5 y&=\sin \left (x \right ) \left (x -1\right )+\left (x +1\right ) \cos \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.381 |
|
| \begin{align*}
y^{\prime }-5 y&=3 \,{\mathrm e}^{x}-2 x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.410 |
|
| \begin{align*}
y^{\prime }-5 y&={\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.097 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.060 |
|
| \begin{align*}
y^{\prime }-y&=x \,{\mathrm e}^{2 x}+1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.696 |
|