2.5.26 second order nonlinear solved by mainardi lioville method

Table 2.1163: second order nonlinear solved by mainardi lioville method [56]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

153

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.902

3258

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.132

3266

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.306

3482

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

6.769

4406

\begin{align*} y y^{\prime \prime }-y^{\prime } y&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.937

6333

\begin{align*} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.904

6343

\begin{align*} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.270

6380

\begin{align*} x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.658

6381

\begin{align*} y^{\prime \prime } x&=x {y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.724

6382

\begin{align*} -2 y^{\prime }+2 x {y^{\prime }}^{2}+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.621

6429

\begin{align*} y y^{\prime \prime }&=y^{\prime } y+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.441

6495

\begin{align*} y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.421

6496

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.476

6497

\begin{align*} x y y^{\prime \prime }&=-y^{\prime } y+x {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_Painleve, ‘3rd‘], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.177

6499

\begin{align*} 2 y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.647

6500

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.682

6504

\begin{align*} y^{\prime } y+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.350

6505

\begin{align*} y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.180

6506

\begin{align*} -y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.198

6508

\begin{align*} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.545

6509

\begin{align*} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.234

6510

\begin{align*} 4 y^{\prime } y-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.392

6511

\begin{align*} a y^{\prime } \left (-y+y^{\prime } x \right )+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.217

6513

\begin{align*} 2 x y y^{\prime \prime }&=-y^{\prime } y+x {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.256

6528

\begin{align*} \sqrt {a^{2}+x^{2}}\, \left (b {y^{\prime }}^{2}+y y^{\prime \prime }\right )&=y^{\prime } y \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.468

7140

\begin{align*} y^{\prime } y-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.204

7141

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.691

7355

\begin{align*} x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.686

9795

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.597

10412

\begin{align*} y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.269

10413

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.306

10420

\begin{align*} y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.224

10421

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.585

10422

\begin{align*} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.136

10423

\begin{align*} 10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.220

12973

\begin{align*} a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.543

12975

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.989

12979

\begin{align*} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.125

12981

\begin{align*} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.425

12982

\begin{align*} 4 y^{\prime } y-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.852

12985

\begin{align*} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y^{\prime } y&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.521

15087

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=\frac {y y^{\prime }}{\sqrt {x^{2}+1}} \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.328

15103

\begin{align*} -y^{\prime } y-x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.224

16405

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=2 y^{\prime } y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.945

16415

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }-2\right ) \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.263

16425

\begin{align*} y y^{\prime \prime }+2 {y^{\prime }}^{2}&=3 y^{\prime } y \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {3}{4}} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.668

18109

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (1+y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.151

19150

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.546

19376

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4.496

20526

\begin{align*} y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.843

20557

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.588

20565

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.522

20583

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.609

22330

\begin{align*} 2 y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= 2 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.934

23927

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.399

24900

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.441