2.1.34 Problem 34
Internal
problem
ID
[10393]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
34
Date
solved
:
Thursday, November 27, 2025 at 10:40:41 AM
CAS
classification
:
[[_2nd_order, _missing_y]]
Solved as second order linear constant coeff ode
Time used: 0.121 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
This is second order non-homogeneous ODE. In standard form the ODE is
\[ A y''(x) + B y'(x) + C y(x) = f(x) \]
Where
\(A=1, B=1, C=0, f(x)=x^{2}+x +1\) . Let the
solution be
\[ y = y_h + y_p \]
Where
\(y_h\) is the solution to the homogeneous ODE
\( A y''(x) + B y'(x) + C y(x) = 0\) , and
\(y_p\) is a particular solution to the
non-homogeneous ODE
\(A y''(x) + B y'(x) + C y(x) = f(x)\) .
\(y_h\) is the solution to
\[ y^{\prime \prime }+y^{\prime } = 0 \]
This is second order with constant coefficients homogeneous ODE. In standard form the
ODE is
\[ A y''(x) + B y'(x) + C y(x) = 0 \]
Where in the above
\(A=1, B=1, C=0\) . Let the solution be
\(y=e^{\lambda x}\) . Substituting this into the ODE
gives
\[ \lambda ^{2} {\mathrm e}^{x \lambda }+\lambda \,{\mathrm e}^{x \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by
\(e^{\lambda x}\)
gives
\[ \lambda ^{2}+\lambda = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting
\(A=1, B=1, C=0\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {-1}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {1^2 - (4) \left (1\right )\left (0\right )}\\ &= -{\frac {1}{2}} \pm {\frac {1}{2}} \end{align*}
Hence
\begin{align*}
\lambda _1 &= -{\frac {1}{2}} + {\frac {1}{2}} \\
\lambda _2 &= -{\frac {1}{2}} - {\frac {1}{2}} \\
\end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= 0 \\
\lambda _2 &= -1 \\
\end{align*}
Since roots are distinct, then the solution is
\begin{align*}
y &= c_1 e^{\lambda _1 x} + c_2 e^{\lambda _2 x} \\
y &= c_1 e^{\left (0\right )x} +c_2 e^{\left (-1\right )x} \\
\end{align*}
Or
\[
y =c_1 +{\mathrm e}^{-x} c_2
\]
Therefore the
homogeneous solution
\(y_h\) is
\[
y_h = c_1 +{\mathrm e}^{-x} c_2
\]
The particular solution is now found using the method of undetermined
coefficients. Looking at the RHS of the ode, which is
\[ x^{2}+x +1 \]
Shows that the corresponding undetermined
set of the basis functions (UC_set) for the trial solution is
\[ [\{1, x, x^{2}\}] \]
While the set of the basis functions for
the homogeneous solution found earlier is
\[ \{1, {\mathrm e}^{-x}\} \]
Since
\(1\) is duplicated in the UC_set, then this basis is
multiplied by extra
\(x\) . The UC_set becomes
\[ [\{x, x^{2}, x^{3}\}] \]
Since there was duplication between the basis
functions in the UC_set and the basis functions of the homogeneous solution, the trial solution
is a linear combination of all the basis function in the above updated UC_set.
\[
y_p = A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]
The
unknowns
\(\{A_{1}, A_{2}, A_{3}\}\) are found by substituting the above trial solution
\(y_p\) into the ODE and comparing
coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 x^{2} A_{3}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2} = x^{2}+x +1
\]
Solving for
the unknowns by comparing coefficients results in
\[ \left [A_{1} = 2, A_{2} = -{\frac {1}{2}}, A_{3} = {\frac {1}{3}}\right ] \]
Substituting the above back in the
above trial solution
\(y_p\) , gives the particular solution
\[
y_p = \frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 +{\mathrm e}^{-x} c_2\right ) + \left (\frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {x^{3}}{3}-\frac {x^{2}}{2}+2 x +c_1 +{\mathrm e}^{-x} c_2 \\
\end{align*}
Figure 2.81: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
Solved as second order linear exact ode
Time used: 0.134 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
An ode of the form
\begin{align*} p \left (x \right ) y^{\prime \prime }+q \left (x \right ) y^{\prime }+r \left (x \right ) y&=s \left (x \right ) \end{align*}
is exact if
\begin{align*} p''(x) - q'(x) + r(x) &= 0 \tag {1} \end{align*}
For the given ode we have
\begin{align*} p(x) &= 1\\ q(x) &= 1\\ r(x) &= 0\\ s(x) &= x^{2}+x +1 \end{align*}
Hence
\begin{align*} p''(x) &= 0\\ q'(x) &= 0 \end{align*}
Therefore (1) becomes
\begin{align*} 0- \left (0\right ) + \left (0\right )&=0 \end{align*}
Hence the ode is exact. Since we now know the ode is exact, it can be written as
\begin{align*} \left (p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y\right )' &= s(x) \end{align*}
Integrating gives
\begin{align*} p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y&=\int {s \left (x \right )\, dx} \end{align*}
Substituting the above values for \(p,q,r,s\) gives
\begin{align*} y^{\prime }+y&=\int {x^{2}+x +1\, dx} \end{align*}
We now have a first order ode to solve which is
\begin{align*} y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
Solve In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x} y\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left ({\mathrm e}^{x} y\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} {\mathrm e}^{x} y&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {{\mathrm e}^{x} \left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right )}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \]
Summary of solutions found
\begin{align*}
y &= \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \\
\end{align*}
Figure 2.82: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
Solved as second order missing y ode
Time used: 0.161 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
This is second order ode with missing dependent variable
\(y\) . Let
\begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} u^{\prime }\left (x \right )+u \left (x \right )-x^{2}-x -1 = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Solve In canonical form a linear first order is
\begin{align*} u^{\prime }\left (x \right ) + q(x)u \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=x^{2}+x +1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \left (\mu \right ) \left (x^{2}+x +1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (u \,{\mathrm e}^{x}\right ) &= \left ({\mathrm e}^{x}\right ) \left (x^{2}+x +1\right ) \\
\mathrm {d} \left (u \,{\mathrm e}^{x}\right ) &= \left (\left (x^{2}+x +1\right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} u \,{\mathrm e}^{x}&= \int {\left (x^{2}+x +1\right ) {\mathrm e}^{x} \,dx} \\ &=\left (x^{2}-x +2\right ) {\mathrm e}^{x} + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ u \left (x \right ) = x^{2}-x +2+{\mathrm e}^{-x} c_1 \]
In summary, these are the
solution found for
\(y\) \begin{align*}
u \left (x \right ) &= x^{2}-x +2+{\mathrm e}^{-x} c_1 \\
\end{align*}
For solution
\(u \left (x \right ) = x^{2}-x +2+{\mathrm e}^{-x} c_1\) , since
\(u=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = x^{2}-x +2+{\mathrm e}^{-x} c_1 \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\) , then we only need to integrate \(f(x)\) .
\begin{align*} \int {dy} &= \int {x^{2}-x +2+{\mathrm e}^{-x} c_1\, dx}\\ y &= 2 x +\frac {x^{3}}{3}-{\mathrm e}^{-x} c_1 -\frac {x^{2}}{2} + c_2 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= 2 x +\frac {x^{3}}{3}-{\mathrm e}^{-x} c_1 -\frac {x^{2}}{2}+c_2 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= 2 x +\frac {x^{3}}{3}-{\mathrm e}^{-x} c_1 -\frac {x^{2}}{2}+c_2 \\
\end{align*}
Figure 2.83: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
Solved as second order integrable as is ode
Time used: 0.078 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
Integrating both sides of the ODE w.r.t
\(x\) gives
\begin{align*} \int \left (y^{\prime \prime }+y^{\prime }\right )d x &= \int \left (x^{2}+x +1\right )d x\\ y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x + c_1 \end{align*}
Which is now solved for \(y\) . Solve In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x} y\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left ({\mathrm e}^{x} y\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} {\mathrm e}^{x} y&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {{\mathrm e}^{x} \left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right )}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \]
Summary of solutions found
\begin{align*}
y &= \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \\
\end{align*}
Figure 2.84: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
Solved as second order integrable as is ode (ABC method)
Time used: 0.075 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
Writing the ode as
\[
y^{\prime \prime }+y^{\prime } = x^{2}+x +1
\]
Integrating both sides of the ODE w.r.t
\(x\) gives
\begin{align*} \int \left (y^{\prime \prime }+y^{\prime }\right )d x &= \int \left (x^{2}+x +1\right )d x\\ y^{\prime }+y = \frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
Which is now solved for \(y\) . Solve In canonical form a linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x} y\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left ({\mathrm e}^{x} y\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} {\mathrm e}^{x} y&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {{\mathrm e}^{x} \left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right )}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \]
Solve In canonical form a
linear first order is
\begin{align*} y^{\prime } + q(x)y &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=1\\ p(x) &=\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int 1d x}\\ &= {\mathrm e}^{x} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x} y\right ) &= \left ({\mathrm e}^{x}\right ) \left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1\right ) \\
\mathrm {d} \left ({\mathrm e}^{x} y\right ) &= \left (\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} {\mathrm e}^{x} y&= \int {\left (\frac {1}{3} x^{3}+\frac {1}{2} x^{2}+x +c_1 \right ) {\mathrm e}^{x} \,dx} \\ &=\frac {{\mathrm e}^{x} \left (2 x^{3}-3 x^{2}+6 c_1 +12 x -12\right )}{6} + c_2 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{x}\) gives the final solution
\[ y = \frac {x^{3}}{3}-\frac {x^{2}}{2}+c_1 +2 x -2+{\mathrm e}^{-x} c_2 \]
Figure 2.85: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
Solved as second order ode using Kovacic algorithm
Time used: 0.108 (sec)
Solve
\begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*}
Writing the ode as
\begin{align*} y^{\prime \prime }+y^{\prime } &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1 \\ B &= 1\tag {3} \\ C &= 0 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {1}{4}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= 1\\ t &= 4 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= \frac {z \left (x \right )}{4} \tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \) . The following table summarizes these
cases.
Case
Allowed pole order for \(r\)
Allowed value for \(\mathcal {O}(\infty )\)
1
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)
2
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\) . Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\) ,\(\{1,3\}\) ,\(\{2\}\) ,\(\{3\}\) ,\(\{3,4\}\) ,\(\{1,2,5\}\) .
no condition
3
\(\left \{ 1,2\right \} \)
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)
Table 2.19: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\) . Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - 0 \\ &= 0 \end{align*}
There are no poles in \(r\) . Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole larger
than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met. Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = {\frac {1}{4}}\) is not a function of \(x\) , then there is no need run Kovacic algorithm to obtain a solution for
transformed ode \(z''=r z\) as one solution is
\[ z_1(x) = {\mathrm e}^{-\frac {x}{2}} \]
Using the above, the solution for the original ode can now be
found. The first solution to the original ode in
\(y\) is found from
\begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {1}{1} \,dx} \\
&= z_1 e^{-\frac {x}{2}} \\
&= z_1 \left ({\mathrm e}^{-\frac {x}{2}}\right ) \\
\end{align*}
Which simplifies to
\[
y_1 = {\mathrm e}^{-x}
\]
The second
solution
\(y_2\) to the original ode is found using reduction of order
\[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives
\begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {1}{1} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{-x}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left ({\mathrm e}^{x}\right ) \\
\end{align*}
Therefore the
solution is
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
&= c_1 \left ({\mathrm e}^{-x}\right ) + c_2 \left ({\mathrm e}^{-x}\left ({\mathrm e}^{x}\right )\right ) \\
\end{align*}
This is second order nonhomogeneous ODE. Let the solution be
\[
y = y_h + y_p
\]
Where
\(y_h\) is the solution to the
homogeneous ODE
\( A y''(x) + B y'(x) + C y(x) = 0\) , and
\(y_p\) is a particular solution to the nonhomogeneous ODE
\(A y''(x) + B y'(x) + C y(x) = f(x)\) .
\(y_h\) is the solution to
\[
y^{\prime \prime }+y^{\prime } = 0
\]
The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_h = {\mathrm e}^{-x} c_1 +c_2
\]
The particular
solution is now found using the method of undetermined coefficients. Looking at the RHS of the
ode, which is
\[ x^{2}+x +1 \]
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
\[ [\{1, x, x^{2}\}] \]
While the set of the basis functions for the homogeneous solution found
earlier is
\[ \{1, {\mathrm e}^{-x}\} \]
Since
\(1\) is duplicated in the UC_set, then this basis is multiplied by extra
\(x\) . The UC_set becomes
\[ [\{x, x^{2}, x^{3}\}] \]
Since there was duplication between the basis functions in
the UC_set and the basis functions of the homogeneous solution, the trial solution
is a linear combination of all the basis function in the above updated UC_set.
\[
y_p = A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]
The
unknowns
\(\{A_{1}, A_{2}, A_{3}\}\) are found by substituting the above trial solution
\(y_p\) into the ODE and comparing
coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 x^{2} A_{3}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2} = x^{2}+x +1
\]
Solving for
the unknowns by comparing coefficients results in
\[ \left [A_{1} = 2, A_{2} = -{\frac {1}{2}}, A_{3} = {\frac {1}{3}}\right ] \]
Substituting the above back in the
above trial solution
\(y_p\) , gives the particular solution
\[
y_p = \frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left ({\mathrm e}^{-x} c_1 +c_2\right ) + \left (\frac {1}{3} x^{3}-\frac {1}{2} x^{2}+2 x\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {x^{3}}{3}-\frac {x^{2}}{2}+2 x +{\mathrm e}^{-x} c_1 +c_2 \\
\end{align*}
Figure 2.86: Slope field \(y^{\prime \prime }+y^{\prime } = x^{2}+x +1\)
✓ Maple. Time used: 0.001 (sec). Leaf size: 26
ode := diff ( diff ( y ( x ), x ), x )+ diff ( y ( x ), x ) = x^2+x+1;
dsolve ( ode , y ( x ), singsol=all);
\[
y = \frac {x^{3}}{3}-{\mathrm e}^{-x} c_1 -\frac {x^{2}}{2}+2 x +c_2
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE, diff(_b(_a),_a) = _a^2-_b(_a)+_a+1, _b(_a)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {d}{d x}y \left (x \right )=x^{2}+x +1 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}+r =0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & r \left (r +1\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (-1, 0\right ) \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (x \right )={\mathrm e}^{-x} \\ \bullet & {} & \textrm {2nd solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (x \right )=1 \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} y_{1}\left (x \right )+\mathit {C2} y_{2}\left (x \right )+y_{p}\left (x \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \,{\mathrm e}^{-x}+\mathit {C2} +y_{p}\left (x \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (x \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (x \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (x \right )=-y_{1}\left (x \right ) \int \frac {y_{2}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x +y_{2}\left (x \right ) \int \frac {y_{1}\left (x \right ) f \left (x \right )}{W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )}d x , f \left (x \right )=x^{2}+x +1\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )=\left [\begin {array}{cc} {\mathrm e}^{-x} & 1 \\ -{\mathrm e}^{-x} & 0 \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (x \right ), y_{2}\left (x \right )\right )={\mathrm e}^{-x} \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (x \right ) \\ {} & {} & y_{p}\left (x \right )=-{\mathrm e}^{-x} \int \left (x^{2}+x +1\right ) {\mathrm e}^{x}d x +\int \left (x^{2}+x +1\right )d x \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (x \right )=-\frac {1}{2} x^{2}+2 x -2+\frac {1}{3} x^{3} \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \,{\mathrm e}^{-x}+\mathit {C2} -\frac {x^{2}}{2}+2 x -2+\frac {x^{3}}{3} \end {array} \]
✓ Mathematica. Time used: 0.065 (sec). Leaf size: 34
ode = D [ y [ x ],{ x ,2}]+ D [ y [ x ], x ]==1+ x + x ^2;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to \frac {x^3}{3}-\frac {x^2}{2}+2 x-c_1 e^{-x}+c_2 \end{align*}
✓ Sympy. Time used: 0.087 (sec). Leaf size: 22
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**2 - x + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = C_{1} + C_{2} e^{- x} + \frac {x^{3}}{3} - \frac {x^{2}}{2} + 2 x
\]