2.5.25 second order ode solved by an integrating factor

Table 2.1161: second order ode solved by an integrating factor [678]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

223

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.352

224

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.356

227

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.230

240

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

241

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

262

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.904

275

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

277

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

325

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

368

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

377

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.401

379

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.355

388

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

815

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

816

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

819

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.241

829

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

830

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

849

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

851

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

864

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

872

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

894

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

903

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.632

905

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=8 x^{{4}/{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.427

913

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

1294

\begin{align*} t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.262

1297

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.999

1303

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1304

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

1306

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1308

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

1310

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

1311

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1313

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

1314

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.427

1316

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.413

1317

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.393

1318

\begin{align*} y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

0.330

1335

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

1336

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

1339

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.515

1342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

1351

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

1739

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

1740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= k_{0} \\ y^{\prime }\left (0\right ) &= k_{1} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

1741

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= -5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.872

1743

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1744

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

1753

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.582

1808

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=14 x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

1812

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.614

1813

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=4 \,{\mathrm e}^{-x \left (2+x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.597

1814

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{{5}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.691

1834

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.733

2366

\begin{align*} 3 y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

2386

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

2387

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

2388

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.392

2389

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.408

2390

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.381

2391

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

2393

\begin{align*} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

2402

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

2406

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

2433

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

2566

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.255

2567

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

2568

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

2569

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

2571

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.411

2583

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

2587

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

2594

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t \,{\mathrm e}^{\alpha t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

2597

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

2600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

2609

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t^{{3}/{2}} {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.504

2629

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.731

3087

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

3127

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

3130

\begin{align*} y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=5 \cos \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

3145

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

3147

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.405

3159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

3167

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.579

3169

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

3174

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.866

3177

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

3184

\begin{align*} y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y&=\sin \left (k x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.637

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.921

3486

\begin{align*} f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= \lambda \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

3489

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.506

3496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

3568

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.342

3570

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

3573

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

3716

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=5 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

3734

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=50 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

3736

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=169 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

3744

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

3745

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.400

3747

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

3751

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

3756

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{m x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

3757

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

3758

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

3760

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.499

3761

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

3770

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=5 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

3772

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.705

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.754

3776

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.586

3777

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

3796

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

3797

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.327

3802

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

4119

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

4120

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

4131

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

4139

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

4140

\begin{align*} y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=A \cos \left (p x \right ) \\ y \left (0\right ) &= 9 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

4155

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

4157

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

4162

\begin{align*} 25 y^{\prime \prime }-30 y^{\prime }+9 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.352

4163

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=\left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.547

4478

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

4487

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

4498

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

4504

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=15 \,{\mathrm e}^{-x} \sqrt {x +1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

4506

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

5768

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

5769

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

5770

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

5771

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

5772

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

5773

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.647

5774

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

5775

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

5777

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

5789

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5790

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

5797

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5798

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

5801

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

5802

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}-{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

5807

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

5826

\begin{align*} 2 \left (2 x^{2}+1\right ) y+4 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

5834

\begin{align*} -2 a \left (-2 a \,x^{2}+1\right ) y-4 a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

5990

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.237

5991

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.678

5992

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.123

5993

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.928

5994

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.963

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.295

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.109

6011

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.093

6012

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{2} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.684

6077

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.874

6122

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.957

6123

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.415

6124

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.126

6125

\begin{align*} 6 y-4 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.366

6127

\begin{align*} \left (1-x \right )^{2} y-2 \left (1-x \right )^{2} y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.431

6162

\begin{align*} -\left (-4 x^{2}+4 x +1\right ) y+4 x \left (1-2 x \right ) y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

6254

\begin{align*} y+2 x \left (x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

6289

\begin{align*} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.434

6290

\begin{align*} \left (8 x^{4}+10 x^{2}+1\right ) y-4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.460

7052

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

7055

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

7070

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

7087

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

7105

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

7107

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

7110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7112

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7115

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.086

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.112

7260

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

7276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=16 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

7280

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=12 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.374

7283

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

7284

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=6 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

7287

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.387

7298

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=12 x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

7335

\begin{align*} r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

7346

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

7371

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.210

7379

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

7572

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

7583

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

7586

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

7590

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

7592

\begin{align*} 4 w^{\prime \prime }+20 w^{\prime }+25 w&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.245

7598

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {25}{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

7600

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.365

7601

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.417

7672

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

7757

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.387

7759

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

7764

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

7766

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

7769

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

7794

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

7795

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.383

7796

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

7797

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

7798

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

7805

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

7808

\begin{align*} t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.243

7811

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

7849

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

7979

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

7992

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

8013

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

8022

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

8026

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.997

8173

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.204

8793

\begin{align*} s^{\prime \prime }+2 s^{\prime }+s&=0 \\ s \left (0\right ) &= 4 \\ s^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

8811

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

8812

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

8932

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

8939

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&={\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

9213

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

9216

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

9219

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

9222

\begin{align*} 4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

9232

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.388

9247

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

9253

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

9261

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

9273

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

9279

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.251

9316

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

9335

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.586

9342

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.953

9804

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.424

10026

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

10237

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

10238

\begin{align*} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.412

10240

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

10457

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.878

12322

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.757

12325

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.704

12440

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.075

12450

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.671

12494

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.690

12545

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

12603

\begin{align*} y^{\prime \prime }&=\frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.481

12629

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.513

12667

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

13707

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.750

13937

\begin{align*} y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.597

14100

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.388

14108

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.681

14110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

14122

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{3}-x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.410

14279

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

14281

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.407

14283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

14285

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

14324

\begin{align*} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.961

14335

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=\frac {{\mathrm e}^{t}}{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

14416

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

14426

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=-8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

14560

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

14561

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.626

14580

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

14581

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

14602

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.412

14603

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

14604

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.416

14605

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

14646

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.541

14647

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=27 \,{\mathrm e}^{-6 x} \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.549

14652

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

14661

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} x^{4}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.954

14680

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

14681

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.525

14687

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \arcsin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

14689

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

14691

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.835

14700

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.095

14711

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.666

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.301

14718

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.559

14918

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.464

14925

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.414

14930

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 27 \\ y^{\prime }\left (0\right ) &= -54 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.405

14936

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.419

14942

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.405

14963

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

15071

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.730

15074

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&={\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.432

15090

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.796

15102

\begin{align*} x^{\prime \prime }+10 x^{\prime }+25 x&=2^{t}+t \,{\mathrm e}^{-5 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

15164

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

15171

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x}&=1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.721

15259

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.329

15299

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

15332

\begin{align*} y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

15414

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.242

15417

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.263

15431

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

15497

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

15518

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y \left (2\right ) &= -4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.278

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.336

15520

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -12 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.392

15521

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y^{\prime }\left (1\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.389

15522

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.108

16068

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.327

16088

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.354

16119

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

16123

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

16472

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16473

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.231

16474

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.294

16477

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.309

16478

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.987

16500

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

16501

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

16502

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

16503

\begin{align*} 25 y^{\prime \prime }-10 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

16504

\begin{align*} 16 y^{\prime \prime }-24 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

16505

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

16506

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.410

16507

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.401

16508

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 14 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.408

16509

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16510

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.389

16511

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16571

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (4\right ) &= 0 \\ y^{\prime }\left (4\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.470

16591

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=169 \sin \left (2 x \right ) \\ y \left (0\right ) &= -10 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

16592

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=10 x +12 \\ y \left (1\right ) &= 6 \\ y^{\prime }\left (1\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.608

16598

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.314

16599

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.322

16600

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=22 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.369

16606

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

16611

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=25 \sin \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

16617

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=18 x^{2}+3 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

16621

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

16624

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.733

16625

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (12 x -4\right ) {\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

16631

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.385

16634

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.392

16635

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

16658

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{2} {\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

16659

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

16674

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

16686

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

16690

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

16691

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

16709

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

16716

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

16728

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

16735

\begin{align*} y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

16739

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

16741

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.401

16743

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

16746

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

16748

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=2 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

16752

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

16973

\begin{align*} x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.999

16999

\begin{align*} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.231

17351

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.278

17392

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

17393

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.281

17402

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

17403

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.459

17411

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.280

17428

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.448

17448

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-32 t^{2} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.013

17462

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=4 \\ y \left (0\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.621

17500

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.536

17501

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

17502

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.580

17503

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

17504

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17506

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.658

17507

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.586

17508

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 t} \ln \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

17509

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \arctan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

17510

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

17530

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.606

17652

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.300

17656

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.733

17669

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.717

17738

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

17772

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

17773

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

17774

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

17775

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.834

17778

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

17781

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.454

17834

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

18128

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

18151

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\left (1-x \right ) {\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

18152

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

18183

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=-2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

18191

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.400

18193

\begin{align*} y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

18194

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.435

18203

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\sin \left (n x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

18215

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

18218

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

18233

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2+{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

18251

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 x +\sin \left (x \right )+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.768

18252

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.715

18254

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.629

18263

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=9 x^{2}-12 x +2 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

18265

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.576

18268

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=10 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

18273

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=16 \,{\mathrm e}^{-x}+9 x -6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.606

18284

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.509

18289

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.630

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.187

18325

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

18345

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.291

18398

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\pi ^{2}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.426

18400

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\arcsin \left (\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.517

18741

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

18758

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

18759

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

18762

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.232

18765

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18770

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18776

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.227

18777

\begin{align*} 9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

18784

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

18788

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

18792

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.411

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.989

18820

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

18823

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

18824

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.367

18832

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

18840

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 t^{2}+4 \,{\mathrm e}^{2 t} t +t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.843

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

18861

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18862

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18865

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

18868

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

18879

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

19172

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

19187

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.558

19198

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.770

19434

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.432

19436

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

19442

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.708

19460

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

19463

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.361

19466

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.386

19469

\begin{align*} 4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.377

19474

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

19479

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.568

19496

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.649

19502

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.631

19508

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.594

19511

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

19527

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.647

19553

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=10 x^{3} {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

19554

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.573

19568

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.221

19577

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.688

19684

\begin{align*} t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.866

19687

\begin{align*} t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.109

19689

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.391

19694

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.581

19788

\begin{align*} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.091

19839

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.721

19840

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.600

19860

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

19861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.581

19864

\begin{align*} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.227

19893

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.728

20047

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

20051

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

20075

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.648

20105

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.878

20334

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

20346

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.380

20366

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

20369

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.459

20370

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

20497

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.440

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.880

20653

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=x^{3}+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

20706

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

20708

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

20709

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \sinh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.662

20711

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.591

20755

\begin{align*} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.282

20848

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=5+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

20855

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

20856

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.872

20874

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\ y \left (1\right ) &= \pi \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.999

20998

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.623

21110

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

21114

\begin{align*} x^{\prime \prime }-6 x^{\prime }+9 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.482

21299

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.340

21478

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.553

21483

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.343

21485

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.348

21494

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.542

21499

\begin{align*} y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.555

21516

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.541

21528

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.155

21542

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.837

21555

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.547

21577

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}+7 x -2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

21588

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.620

21876

\begin{align*} 9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.428

21886

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

21889

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.745

21891

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.751

21931

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.437

21933

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.657

21962

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

21963

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.258

21971

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.277

22099

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.224

22103

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

22107

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

22110

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

22138

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.353

22139

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.370

22140

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

22141

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.376

22142

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

22148

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

22152

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

22159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

22626

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.296

22642

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.222

22643

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

22644

\begin{align*} 4 i^{\prime \prime }-12 i^{\prime }+9 i&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

22648

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

22650

\begin{align*} s^{\prime \prime }+16 s^{\prime }+64 s&=0 \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.350

22676

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

22684

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

22687

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

22701

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.337

22718

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.860

22735

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

22738

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

22740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

22744

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

22745

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

22750

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

22752

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.830

22773

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.718

22778

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

22792

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

23028

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

23029

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

23030

\begin{align*} z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23031

\begin{align*} z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.220

23068

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

23070

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

23074

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

23077

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=5 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

23083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.633

23086

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.510

23089

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

23090

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

23110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

23111

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

23271

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

23279

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.706

23283

\begin{align*} 3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.231

23336

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

23343

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

23359

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

23362

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

23363

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23455

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

23461

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.531

23462

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=x^{2} {\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

23479

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.409

23485

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

23496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

23510

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.475

23524

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

23528

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

23529

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=\frac {{\mathrm e}^{-5 x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.573

23530

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

23532

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&={\mathrm e}^{6 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

23535

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23536

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.548

23537

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.453

23545

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.675

23546

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ y \left (1\right ) &= 4 \,{\mathrm e}^{-3} \\ y^{\prime }\left (1\right ) &= -2 \,{\mathrm e}^{-3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.743

23548

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

23549

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {5}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.755

23554

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=-\frac {{\mathrm e}^{-t}}{\left (t +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23974

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

23982

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x^{2}-2 x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

23988

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=1+2 x +3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.403

23995

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

24007

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.292

24013

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

24016

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x} \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.306

24060

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

24068

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.452

24439

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

24440

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

24459

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

24460

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.321

24465

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

24536

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

24547

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=7+75 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

24550

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

24567

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ y \left (0\right ) &= -3 \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.317

24568

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

24598

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.256

24599

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.250

24600

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.255

24604

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

24605

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.269

24606

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=7+{\mathrm e}^{x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.308

24613

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.272

24614

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

24615

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=12 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.309

24616

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.302

24625

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=20-3 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

24626

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4-8 x +6 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

24628

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

24629

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.303

24635

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

24636

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=18 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

24637

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

24638

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

24639

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{a x}+f^{\prime \prime }\left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

24677

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.265

24678

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2}+3 x +3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.278

24679

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{3}-4 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.280

24680

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+6 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

24689

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.310

24690

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

24719

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2+x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.343

24720

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2+x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

24732

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.520

24742

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.531

24743

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

24744

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

24751

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

25095

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

25100

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

25103

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

25106

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

25110

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

25114

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.378

25115

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

25120

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

25121

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

25123

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

25124

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

25137

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

25140

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

25204

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.541

25205

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.087

25206

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.868

25207

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.854

25208

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.841

25209

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.829

25216

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.169

25271

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

25273

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.728

25276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

25550

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.532

25569

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.278

25570

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.504

25579

\begin{align*} r^{\prime \prime }+2 r^{\prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.361

25669

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179