| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.634 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.230 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 7 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.013 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.777 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.241 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 7 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.708 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.889 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.097 |
|
| \begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.675 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 1.010 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| \begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.616 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right ) {\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.038 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.193 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.905 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{4} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.138 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=2 \left (x -1\right )^{2} {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.947 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.733 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=-2 x^{2} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.411 |
|
| \begin{align*}
\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.322 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.990 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.752 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.714 |
|
| \begin{align*}
\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.605 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.737 |
|
| \begin{align*}
\left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.882 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
\left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.731 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.921 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
y^{\prime \prime } x +x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.036 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}+2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.687 |
|
| \begin{align*}
y^{\prime \prime } x&=x +y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
-y+y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.737 |
|
| \begin{align*}
-\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] | ✓ | ✓ | ✓ | ✗ | 4.743 |
|
| \begin{align*}
\left (\csc \left (x \right )+\cot \left (x \right )\right ) y^{\prime }+y^{\prime \prime }&=1+a \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
2.541 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=x^{n} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
0.566 |
|
| \begin{align*}
-y-\left (-x +2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.721 |
|
| \begin{align*}
y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.788 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.954 |
|
| \begin{align*}
-2 y^{\prime }+\left (a -x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
c y^{\prime }+\left (b x +a \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.367 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.229 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=a \,x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \left (x +3\right ) \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 1.414 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=3 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.395 |
|
| \begin{align*}
-y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.951 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.237 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.678 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.123 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.928 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.963 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.700 |
|
| \begin{align*}
-y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.750 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.663 |
|
| \begin{align*}
-y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.821 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.689 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (-x^{2}+1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.924 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.515 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.714 |
|
| \begin{align*}
-2 y+2 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.654 |
|
| \begin{align*}
2 y+2 \left (1-x \right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.579 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 1.604 |
|
| \begin{align*}
-3 y+3 y^{\prime } x +\left (2 x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.526 |
|
| \begin{align*}
-y+\left (x +1\right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[_Jacobi] |
✓ |
✓ |
✓ |
✗ |
0.678 |
|
| \begin{align*}
y+\left (1-x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[_Jacobi] |
✓ |
✓ |
✓ |
✗ |
0.546 |
|
| \begin{align*}
4 y+2 \left (1-2 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.510 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.248 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.776 |
|
| \begin{align*}
-9 y-3 \left (1-3 x \right ) y^{\prime }+\left (1-3 x \right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.569 |
|
| \begin{align*}
2 a^{2} y-2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.633 |
|
| \begin{align*}
-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| \begin{align*}
x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.776 |
|
| \begin{align*}
2 y x -2 \left (x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.595 |
|
| \begin{align*}
-2 y x -2 \left (-x^{2}+1\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.601 |
|
| \begin{align*}
2 y+2 \left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.616 |
|
| \begin{align*}
-y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.190 |
|
| \begin{align*}
a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime }&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✗ | 0.715 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.516 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.723 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.230 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.418 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| \begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.645 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.645 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.059 |
|
| \begin{align*}
t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.243 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.670 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.922 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.997 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 2.394 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.954 |
|
| \begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.924 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y&=\left (3 x +2\right ) {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.726 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\frac {-x^{2}+1}{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.931 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.471 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.632 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime } x -y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.213 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.007 |
|
| \begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime }&=\cos \left (\frac {1}{x}\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.096 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y&=x +\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.624 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.855 |
|
| \begin{align*}
x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| \begin{align*}
\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (-\sin \left (x \right )+\cos \left (x \right )\right ) y&=\left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.147 |
|
| \begin{align*}
y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\
\end{align*} |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.516 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
18.359 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✓ | 18.138 |
|
| \begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.275 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| \begin{align*}
-2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=5 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=\left (x^{2}-1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.871 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.021 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.700 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.251 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.953 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }&=2 t^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.050 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.202 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.277 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.722 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.870 |
|
| \begin{align*}
t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
t y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.467 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.535 |
|
| \begin{align*}
-y+y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.552 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
1.683 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| \begin{align*}
-y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.254 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.060 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.075 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.671 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.475 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.394 |
|
| \begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.117 |
|
| \begin{align*}
\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
4.624 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.417 |
|
| \begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| \begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
3.618 |
|
| \begin{align*}
x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
0.815 |
|
| \begin{align*}
\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✗ | ✗ | 0.734 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.580 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.870 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 y \sin \left (x \right )&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.140 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.546 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
x^{\prime }+t x^{\prime \prime }&=1 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x&=4 t^{7} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.708 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.835 |
|
| \begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=\left (2+x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.151 |
|
| \begin{align*}
\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (2 x +1\right )^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.431 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=-6 x^{3}+4 x^{2} \\
y \left (2\right ) &= 4 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.217 |
|
| \begin{align*}
\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.900 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\
x \left (1\right ) &= 1 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.102 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\
y \left (1\right ) &= -2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.678 |
|
| \begin{align*}
u^{\prime \prime }+\frac {2 u^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.600 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.979 |
|
| \begin{align*}
-\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
24.576 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&={\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.163 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.227 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| \begin{align*}
x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
y \left (5\right ) &= 0 \\
y^{\prime }\left (5\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.009 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.351 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.204 |
|
| \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
y \left (-1\right ) &= 4 \\
y^{\prime }\left (-1\right ) &= 12 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.887 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=6 \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.309 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} | [[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] | ✓ | ✓ | ✓ | ✓ | 1.079 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.266 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {50}{x^{3}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.058 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x +1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.913 |
|
| \begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
y^{\prime \prime } x&=3 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.302 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -22 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.383 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.562 |
|
| \begin{align*}
3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.543 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.176 |
|
| \begin{align*}
t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y&=-\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.748 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.548 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\
y \left (1\right ) &= -1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.969 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (-1\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.658 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| \begin{align*}
x \ln \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.221 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
\left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| \begin{align*}
\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.701 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.244 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
[_Jacobi] |
✓ |
✓ |
✓ |
✗ |
0.670 |
|
| \begin{align*}
\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y&=6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.992 |
|
| \begin{align*}
y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.791 |
|
| \begin{align*}
x \ln \left (x \right ) y^{\prime \prime }-y^{\prime }&=\ln \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.490 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.912 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.687 |
|
| \begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.564 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.888 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=g \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.004 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 1.405 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.245 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.462 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.790 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
3.432 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
1.274 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=\left (x^{2}-1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.691 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.130 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.388 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.647 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
3.109 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.653 |
|
| \begin{align*}
v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.771 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.654 |
|
| \begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=3 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| \begin{align*}
V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.184 |
|
| \begin{align*}
V^{\prime \prime }+\frac {V^{\prime }}{r}&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.903 |
|
| \begin{align*}
v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.446 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.902 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| \begin{align*}
-y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.512 |
|
| \begin{align*}
-y+y^{\prime } x +y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.140 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.429 |
|
| \begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{r}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.709 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.548 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.143 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.128 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
3.581 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| \begin{align*}
-y+y^{\prime } x +y^{\prime \prime }&=X \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.347 |
|
| \begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.983 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.170 |
|
| \begin{align*}
-y+y^{\prime } x&=\left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.112 |
|
| \begin{align*}
\left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.870 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.331 |
|
| \begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| \begin{align*}
-y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.701 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
-y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.862 |
|
| \begin{align*}
\left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.071 |
|
| \begin{align*}
y^{\prime \prime } x +\left (x -1\right ) y^{\prime }-y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.062 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.855 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.973 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.248 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.004 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.962 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.301 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\
y \left (1\right ) &= \pi \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 2.999 |
|
| \begin{align*}
x^{\prime \prime }-\frac {x^{\prime }}{t}&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }-3 x&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.619 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=6 \left (x^{2}+1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.560 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.547 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.268 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.620 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.806 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.778 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.877 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.722 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[_Hermite] |
✓ |
✓ |
✓ |
✗ |
0.526 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
1.091 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.533 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.864 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.830 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.730 |
|
| \begin{align*}
\left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y&=24 x^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 1.054 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.718 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.491 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.750 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }&=2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.695 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.624 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.710 |
|
| \begin{align*}
5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.185 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.176 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.531 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.963 |
|
| \begin{align*}
5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 1.651 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{{1}/{4}} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.284 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\
y \left (1\right ) &= A \\
y \left (2\right ) &= B \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.458 |
|
| \begin{align*}
\left (2 x +1\right ) y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.934 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.538 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.264 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.384 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.041 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.634 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.108 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.080 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.102 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.065 |
|
| \begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| \begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.665 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 0.712 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.959 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.728 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }+y&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| \begin{align*}
y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
11.580 |
|
| \begin{align*}
t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.717 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|