2.5.24 second order ode non constant coeff transformation on B

Table 2.1159: second order ode non constant coeff transformation on B [380]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

147

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.634

150

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.700

227

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.230

229

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 7 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

1.013

244

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

262

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.904

376

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.506

381

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.777

819

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.241

821

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 7 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

1.069

833

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.096

902

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.708

907

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.889

1299

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.721

1329

\begin{align*} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.097

1347

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.675

1348

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.010

1351

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

1353

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.616

1354

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right ) {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.038

1745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.193

1746

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.871

1749

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.664

1810

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.905

1815

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{4} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.138

1831

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=2 \left (x -1\right )^{2} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.947

1834

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=\left (x -1\right )^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.733

1837

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=-2 x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.411

1838

\begin{align*} \left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.322

2373

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.766

2392

\begin{align*} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.990

2394

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.752

2395

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.714

2397

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

2400

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.908

2431

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.737

2433

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

2435

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.908

2581

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.787

2627

\begin{align*} t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.671

2629

\begin{align*} \left (-1+t \right )^{2} y^{\prime \prime }-2 \left (-1+t \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.731

2631

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.776

3229

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x +\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.921

3249

\begin{align*} \left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

1.036

3252

\begin{align*} y^{\prime \prime } x +x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.975

3492

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.036

3567

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=9 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.957

3574

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.452

4139

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

4425

\begin{align*} y^{\prime \prime } x&=x +y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

4508

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.362

5817

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.737

5845

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.743

5857

\begin{align*} \left (\csc \left (x \right )+\cot \left (x \right )\right ) y^{\prime }+y^{\prime \prime }&=1+a \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

2.541

5888

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.726

5889

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x^{n} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

5895

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.592

5896

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.572

5900

\begin{align*} a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.839

5910

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

0.566

5914

\begin{align*} -y-\left (-x +2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.721

5915

\begin{align*} y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

0.602

5934

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.788

5935

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.954

5937

\begin{align*} -2 y^{\prime }+\left (a -x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.644

5939

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.664

5950

\begin{align*} c y^{\prime }+\left (b x +a \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.964

5952

\begin{align*} y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.367

5970

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.229

5971

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.921

5972

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=a \,x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.790

5973

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \left (x +3\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.414

5974

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=3 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.395

5989

\begin{align*} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.951

5990

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.237

5991

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.678

5992

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.123

5993

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.928

5994

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{5} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.963

6054

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.700

6055

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.750

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.663

6058

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.821

6068

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.689

6069

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.691

6070

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (-x^{2}+1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.924

6100

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.515

6101

\begin{align*} y-\left (x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.714

6103

\begin{align*} -2 y+2 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.654

6120

\begin{align*} 2 y+2 \left (1-x \right ) y^{\prime }+\left (-x +2\right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.579

6133

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.604

6138

\begin{align*} -3 y+3 y^{\prime } x +\left (2 x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.526

6141

\begin{align*} -y+\left (x +1\right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

0.678

6142

\begin{align*} y+\left (1-x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

0.546

6148

\begin{align*} 4 y+2 \left (1-2 x \right ) y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.510

6150

\begin{align*} y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.248

6151

\begin{align*} y-\left (x +1\right ) y^{\prime }+2 \left (x +1\right )^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.776

6177

\begin{align*} -9 y-3 \left (1-3 x \right ) y^{\prime }+\left (1-3 x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.569

6183

\begin{align*} 2 a^{2} y-2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

0.851

6188

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.633

6200

\begin{align*} -y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.606

6201

\begin{align*} x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.776

6204

\begin{align*} 2 y x -2 \left (x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.595

6206

\begin{align*} -2 y x -2 \left (-x^{2}+1\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.601

6225

\begin{align*} 2 y+2 \left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.616

6283

\begin{align*} -y+y^{\prime } x +x^{5} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.190

6293

\begin{align*} a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.715

6403

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.876

7114

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.516

7117

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.355

7123

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.803

7139

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.894

7150

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.112

7316

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.723

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.230

7339

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.418

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.816

7373

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.105

7375

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.645

7377

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.645

7688

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.059

7808

\begin{align*} t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.243

7816

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.670

7850

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.922

8026

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.997

8029

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.394

8032

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.954

8033

\begin{align*} \left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.924

8043

\begin{align*} \left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y&=\left (3 x +2\right ) {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.726

8046

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\frac {-x^{2}+1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.931

8049

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.931

8185

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.779

8262

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.608

8754

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.471

8759

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.632

8766

\begin{align*} y^{\prime \prime } x +y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.213

8767

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.007

8768

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime }&=\cos \left (\frac {1}{x}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.096

8769

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.624

8770

\begin{align*} 2 y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.855

8772

\begin{align*} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=x \left (1-\ln \left (x \right )\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.852

8775

\begin{align*} \left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (-\sin \left (x \right )+\cos \left (x \right )\right ) y&=\left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.147

8802

\begin{align*} y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.516

8949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.359

8950

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.138

8951

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.275

8975

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.613

9039

\begin{align*} -2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.760

9186

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.838

9211

\begin{align*} y^{\prime \prime } x -3 y^{\prime }&=5 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.861

9275

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=\left (x^{2}-1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.871

9277

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.021

9278

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.700

9279

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.251

9342

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.953

9637

\begin{align*} t y^{\prime \prime }-y^{\prime }&=2 t^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.050

9770

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.202

9771

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.277

9776

\begin{align*} \cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.987

9783

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.722

9880

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.870

10033

\begin{align*} t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.115

10036

\begin{align*} t y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.845

10037

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.467

10430

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.535

12315

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.552

12359

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.705

12377

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

1.683

12425

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.816

12431

\begin{align*} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.254

12432

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.060

12440

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.075

12490

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.671

12492

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.475

12515

\begin{align*} x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

12550

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.117

12563

\begin{align*} \left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y&=0 \\ \end{align*}

[_Gegenbauer]

0.652

12692

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.624

12702

\begin{align*} y^{\prime \prime }&=-\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.417

13685

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.973

13837

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.618

13903

\begin{align*} x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.815

13921

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.734

14135

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.580

14136

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.870

14137

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 y \sin \left (x \right )&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.140

14149

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.546

14185

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.370

14210

\begin{align*} x^{\prime }+t x^{\prime \prime }&=1 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.403

14337

\begin{align*} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x&=4 t^{7} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.708

14561

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.626

14691

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.835

14692

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=\left (2+x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.151

14695

\begin{align*} \left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (2 x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.431

14698

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.179

14721

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=-6 x^{3}+4 x^{2} \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.217

14726

\begin{align*} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.900

14966

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\ x \left (1\right ) &= 1 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.102

14970

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.678

15086

\begin{align*} u^{\prime \prime }+\frac {2 u^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.315

15157

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.600

15163

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.979

15170

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.576

15334

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.360

15403

\begin{align*} -y^{\prime }+y^{\prime \prime } x&={\mathrm e}^{x} x^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.163

15483

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.227

15493

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.738

15655

\begin{align*} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.973

15656

\begin{align*} x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime }&=x^{2} \\ y \left (5\right ) &= 0 \\ y^{\prime }\left (5\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.009

15661

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.811

15665

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.351

16382

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.928

16383

\begin{align*} y^{\prime \prime } x&=2 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.687

16410

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.860

16416

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.204

16417

\begin{align*} y^{\prime \prime } x&=2 y^{\prime } \\ y \left (-1\right ) &= 4 \\ y^{\prime }\left (-1\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.887

16422

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=6 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.054

16475

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

1.175

16477

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.309

16555

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.079

16573

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.266

16679

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {50}{x^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.638

16686

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.717

16692

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.058

16699

\begin{align*} \left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.913

16714

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

16736

\begin{align*} y^{\prime \prime } x&=3 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.678

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.302

17357

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -22 \\ \end{align*}

[[_Emden, _Fowler]]

1.383

17362

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.562

17413

\begin{align*} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.543

17414

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.176

17538

\begin{align*} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y&=-\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.748

17615

\begin{align*} 2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.414

17616

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.548

17644

\begin{align*} 2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y&=0 \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.969

17672

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.500

17779

\begin{align*} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.540

18093

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.658

18094

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.625

18096

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.873

18097

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.339

18290

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.221

18293

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.638

18294

\begin{align*} \left (2+x \right )^{2} y^{\prime \prime }+3 \left (2+x \right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.698

18295

\begin{align*} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.701

18304

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.244

18309

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[_Jacobi]

0.670

18310

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.992

18331

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.791

18332

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }-y^{\prime }&=\ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.490

18368

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.683

18743

\begin{align*} y-y^{\prime } x +\left (-x \cot \left (x \right )+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.912

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.687

18872

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.564

18873

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.888

18875

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.004

18879

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.405

19172

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.245

19364

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.628

19420

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.462

19421

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.427

19429

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.790

19434

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.432

19455

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

1.274

19523

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=\left (x^{2}-1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.691

19525

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.130

19526

\begin{align*} y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.388

19527

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.647

19687

\begin{align*} t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.109

19776

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.653

19778

\begin{align*} v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.045

19858

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.771

19859

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.654

19874

\begin{align*} y^{\prime \prime } x +3 y^{\prime }&=3 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.672

19878

\begin{align*} V^{\prime \prime }+\frac {2 V^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.184

19879

\begin{align*} V^{\prime \prime }+\frac {V^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.903

19894

\begin{align*} v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.924

20092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.339

20101

\begin{align*} \left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.446

20109

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.902

20143

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.537

20175

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.984

20194

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.512

20198

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.140

20214

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.429

20215

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.325

20484

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.709

20485

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.548

20499

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.143

20503

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.128

20524

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.581

20552

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.489

20560

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.903

20608

\begin{align*} -y+y^{\prime } x +y^{\prime \prime }&=X \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.347

20640

\begin{align*} \left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.983

20644

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (1-x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.170

20648

\begin{align*} -y+y^{\prime } x&=\left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.112

20651

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.870

20658

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.885

20664

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.331

20673

\begin{align*} \left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.895

20674

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.701

20778

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.952

20784

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.862

20785

\begin{align*} \left (2+x \right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.071

20800

\begin{align*} y^{\prime \prime } x +\left (x -1\right ) y^{\prime }-y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.062

20803

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.855

20843

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.973

20844

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.248

20859

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

2.004

20862

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.962

20863

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.897

20867

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.301

20874

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}-x \\ y \left (1\right ) &= \pi \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.999

21163

\begin{align*} x^{\prime \prime }-\frac {x^{\prime }}{t}&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.865

21173

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }-3 x&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.619

21554

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=6 \left (x^{2}+1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.560

21555

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{3} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.547

21559

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.268

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.620

21936

\begin{align*} y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.806

21964

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.513

22315

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.778

22459

\begin{align*} y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.877

22574

\begin{align*} y^{\prime \prime } x +y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.722

22638

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[_Hermite]

0.526

22653

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=x \\ \end{align*}

[_Gegenbauer]

1.091

22683

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.533

22738

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

22752

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.830

22765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.179

22766

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.730

22768

\begin{align*} \left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y&=24 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.054

22773

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.718

22790

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.491

23104

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.750

23105

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.903

23230

\begin{align*} y^{\prime \prime } x +y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.848

23244

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.695

23282

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.678

23284

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.624

23285

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.378

23296

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.710

23368

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.185

23369

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.868

23372

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.691

23379

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.562

23382

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.176

23383

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (-1\right ) &= 1 \\ y^{\prime }\left (-1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.079

23461

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.531

23502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.963

23538

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.651

23539

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{{1}/{4}} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.284

23761

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\ln \left (x \right ) \\ y \left (1\right ) &= A \\ y \left (2\right ) &= B \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.458

23920

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.420

23964

\begin{align*} \sin \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.467

24875

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

24876

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.934

24881

\begin{align*} \cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.653

24888

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.538

25190

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.264

25191

\begin{align*} t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.384

25198

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.041

25199

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.634

25200

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.108

25201

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.080

25202

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.102

25203

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.065

25218

\begin{align*} \left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.662

25219

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.665

25222

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.712

25233

\begin{align*} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

0.959

25273

\begin{align*} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.728

25274

\begin{align*} t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.937

25275

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.628

25277

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.580

25278

\begin{align*} t y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.717

25681

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.701

25740

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.970