| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| \begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.120 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.374 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3+t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.342 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3+t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.388 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.730 |
|
| \begin{align*}
y^{\prime }&=-x \,{\mathrm e}^{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.345 |
|
| \begin{align*}
{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.784 |
|
| \begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.053 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \sin \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.221 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.191 |
|
| \begin{align*}
y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.987 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y}+x \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.355 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.149 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.468 |
|
| \begin{align*}
y^{\prime }&=8 x^{3} {\mathrm e}^{-2 y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.917 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.309 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.122 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+3 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.065 |
|
| \begin{align*}
{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.939 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.643 |
|
| \begin{align*}
x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.258 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.369 |
|
| \begin{align*}
y^{\prime }&=10+{\mathrm e}^{x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.161 |
|
| \begin{align*}
y^{\prime }&=10 \,{\mathrm e}^{x +y}+x^{2} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.714 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.326 |
|
| \begin{align*}
y^{\prime }&=5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
2.231 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.113 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{-2 x} \\
x \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 3.033 |
|
| \begin{align*}
x^{\prime }&=t^{2} {\mathrm e}^{-x} \\
x \left (0\right ) &= \ln \left (2\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.002 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{t +x} \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.367 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.997 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.534 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y-x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.119 |
|
| \begin{align*}
x \,{\mathrm e}^{y}+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.365 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.641 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.516 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.205 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+10 t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.685 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 y+2 t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.777 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| \begin{align*}
y^{\prime }-1&={\mathrm e}^{x +2 y} \\
\end{align*} | [[_homogeneous, ‘class C‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 1.182 |
|
| \begin{align*}
y^{\prime }&=x^{2} {\mathrm e}^{-3 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.505 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.729 |
|
| \begin{align*}
{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.392 |
|
| \begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| \begin{align*}
x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.717 |
|
| \begin{align*}
s^{\prime }+x^{2}&=x^{2} {\mathrm e}^{3 s} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.311 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{x}-t \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.340 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +3 y}+1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-y-x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.960 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
y^{\prime }&=1+6 x \,{\mathrm e}^{x -y} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.226 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.764 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.469 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.524 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+3 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.455 |
|