2.1.69 Problem 69
Internal
problem
ID
[10327]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
69
Date
solved
:
Thursday, November 27, 2025 at 10:34:14 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
Time used: 0.194 (sec)
Solve
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\
\end{align*}
Writing the ode as
\begin{align*} y^{\prime } &= x \,{\mathrm e}^{x +y}+\sin \left (x \right )\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{-y}\) then
\begin{align*} u' &= -y^{\prime } {\mathrm e}^{-y} \end{align*}
The above shows that
\begin{align*} y^{\prime } &= -u^{\prime }\left (x \right ) {\mathrm e}^{y}\\ &= -\frac {u^{\prime }\left (x \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} -\frac {u^{\prime }\left (x \right )}{u}&=\frac {x \,{\mathrm e}^{x}}{u}+\sin \left (x \right ) \end{align*}
The above simplifies to
\begin{align*} -u^{\prime }\left (x \right )&={\mathrm e}^{x} x +\sin \left (x \right ) u \left (x \right )\\ u^{\prime }\left (x \right )+\sin \left (x \right ) u \left (x \right )&=-{\mathrm e}^{x} x\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (x \right )\) .
In canonical form a linear first order is
\begin{align*} u^{\prime }\left (x \right ) + q(x)u \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\sin \left (x \right )\\ p(x) &=-{\mathrm e}^{x} x \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \sin \left (x \right )d x}\\ &= {\mathrm e}^{-\cos \left (x \right )} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \left (\mu \right ) \left (-{\mathrm e}^{x} x\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (u \,{\mathrm e}^{-\cos \left (x \right )}\right ) &= \left ({\mathrm e}^{-\cos \left (x \right )}\right ) \left (-{\mathrm e}^{x} x\right ) \\
\mathrm {d} \left (u \,{\mathrm e}^{-\cos \left (x \right )}\right ) &= \left (-{\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} u \,{\mathrm e}^{-\cos \left (x \right )}&= \int {-{\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )} \,dx} \\ &=\int -{\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}d x + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-\cos \left (x \right )}\) gives the final solution
\[ u \left (x \right ) = {\mathrm e}^{\cos \left (x \right )} \left (\int -{\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}d x +c_1 \right ) \]
Substituting the solution
found for
\(u \left (x \right )\) in
\(u={\mathrm e}^{-y}\) gives
\begin{align*} {\mathrm e}^{-y} = {\mathrm e}^{\cos \left (x \right )} \left (\int -{\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}d x +c_1 \right ) \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= -\ln \left (-\int {\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}d x +c_1 \right )-\cos \left (x \right ) \\
\end{align*}
Figure 2.79: Slope field \(y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (-\int {\mathrm e}^{x} x \,{\mathrm e}^{-\cos \left (x \right )}d x +c_1 \right )-\cos \left (x \right ) \\
\end{align*}
✓ Maple. Time used: 0.010 (sec). Leaf size: 29
ode := diff ( y ( x ), x ) = x*exp(x+y(x))+sin(x);
dsolve ( ode , y ( x ), singsol=all);
\[
y = -\cos \left (x \right )-\ln \left (-c_1 -\int x \,{\mathrm e}^{x -\cos \left (x \right )}d x \right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = 4
-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x \,{\mathrm e}^{x +y \left (x \right )}+\sin \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x \,{\mathrm e}^{x +y \left (x \right )}+\sin \left (x \right ) \end {array} \]
✓ Mathematica. Time used: 0.282 (sec). Leaf size: 150
ode = D [ y [ x ], x ]== x * Exp [ x + y [ x ]]+ Sin [ x ];
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\[
\text {Solve}\left [\int _1^x\left (-\exp \left (K[2]-\int _1^{K[2]}-\sin (K[1])dK[1]\right ) K[2]-\exp \left (-y(x)-\int _1^{K[2]}-\sin (K[1])dK[1]\right ) \sin (K[2])\right )dK[2]+\int _1^{y(x)}-\exp \left (-K[3]-\int _1^x-\sin (K[1])dK[1]\right ) \left (\exp \left (K[3]+\int _1^x-\sin (K[1])dK[1]\right ) \int _1^x\exp \left (-K[3]-\int _1^{K[2]}-\sin (K[1])dK[1]\right ) \sin (K[2])dK[2]-1\right )dK[3]=c_1,y(x)\right ]
\]
✓ Sympy. Time used: 10.213 (sec). Leaf size: 24
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x*exp(x + y(x)) - sin(x) + Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = \log {\left (\frac {e^{- \cos {\left (x \right )}}}{C_{1} - \int x e^{x} e^{- \cos {\left (x \right )}}\, dx} \right )}
\]