| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=2 x +1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime }&=\left (x -2\right )^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.311 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {2+x}} \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {x^{2}+9} \\
y \left (-4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| \begin{align*}
y^{\prime }&=\frac {10}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime }&=\cos \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=2 x +1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime }&=\left (x -2\right )^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {2+x}} \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {x^{2}+9} \\
y \left (-4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.647 |
|
| \begin{align*}
y^{\prime }&=\frac {10}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\cos \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.266 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.257 |
|
| \begin{align*}
y^{\prime }&=-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime }&=-x \sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime }&=x \ln \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime }&=-x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime }&=x \sin \left (x^{2}\right ) \\
y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x \right ) \\
y \left (\frac {\pi }{4}\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.551 |
|
| \begin{align*}
x^{\prime }&=1-\sin \left (2 t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime }&=2 \,{\mathrm e}^{3 x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime }&=\frac {2}{\sqrt {-x^{2}+1}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&=t^{2}+3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t} t \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.308 |
|
| \begin{align*}
y^{\prime }&=\sin \left (3 t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime }&=\sin \left (t \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{t^{2}+4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime }&=\ln \left (t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{\sqrt {t}+1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t} t \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime }&=\sin \left (t \right )^{2} \\
y \left (\frac {\pi }{6}\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
y^{\prime }&=8 \,{\mathrm e}^{4 t}+t \\
y \left (0\right ) &= 12 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime }+\frac {m}{x}&=\ln \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{{2}/{3}}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) x^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime }&=1-x^{5}+\sqrt {x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime }&=x +\frac {1}{x} \\
y \left (-2\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=3 x^{2} \tan \left (x \right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
x&=y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
170.114 |
|
| \begin{align*}
y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right )&=1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.449 |
|
| \begin{align*}
y^{\prime }&=a f \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {a^{2}-x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime } x&=-\sqrt {a^{2}-x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
\left (x +a \right ) y^{\prime }&=b x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=\left (a -x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.300 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2}&=\left (a b -2 \left (a +b \right ) x +2 x^{2}\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.769 |
|
| \begin{align*}
x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| \begin{align*}
{y^{\prime }}^{3}-a x y^{\prime }+x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.151 |
|
| \begin{align*}
{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.980 |
|
| \begin{align*}
a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.213 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )+y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.214 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.711 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.347 |
|
| \begin{align*}
x&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 6.517 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.402 |
|
| \begin{align*}
y^{\prime } x&=x^{2}+2 x -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
x^{2} y^{\prime }&=x^{3} \sin \left (3 x \right )+4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
1-\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime }&=f \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| \begin{align*}
y^{\prime } x&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.882 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
y^{\prime }&=\sin \left (5 x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime }&=\left (x +1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
1+{\mathrm e}^{3 x} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{1+\sin \left (x \right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x^{\prime }+t&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.208 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
\left (x^{2}-3 x +2\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x \left (x^{2}-4\right ) y^{\prime }&=1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime }&=2 x^{2}+x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime }&=x +1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
y^{\prime }&=1+\frac {\sec \left (x \right )}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.347 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.386 |
|
| \begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.177 |
|
| \begin{align*}
\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
c y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
c y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
5 y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
{\mathrm e} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
\pi y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
f \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.253 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
x \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
x \sin \left (x \right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
{y^{\prime }}^{n}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.316 |
|
| \begin{align*}
x {y^{\prime }}^{n}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.451 |
|
| \begin{align*}
y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| \begin{align*}
y^{\prime } x -\sqrt {a^{2}-x^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.846 |
|
| \begin{align*}
y^{\prime }-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.693 |
|
| \begin{align*}
{y^{\prime }}^{3}-a x y^{\prime }+x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.957 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )+y^{\prime }-x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.386 |
|
| \begin{align*}
a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.380 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.422 |
|
| \begin{align*}
y^{\prime }&=f \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
x^{\prime }&=t \cos \left (t^{2}\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
x^{\prime }&=\frac {t +1}{\sqrt {t}} \\
x \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
x^{\prime }&=t \,{\mathrm e}^{-2 t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
x^{\prime }&=\frac {1}{t \ln \left (t \right )} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.210 |
|
| \begin{align*}
\sqrt {t}\, x^{\prime }&=\cos \left (\sqrt {t}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
x^{\prime }&=\frac {{\mathrm e}^{-t}}{\sqrt {t}} \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
x^{\prime }&=\sin \left (t \right )+\cos \left (t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
u^{\prime }&=4 t \ln \left (t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
z^{\prime }&={\mathrm e}^{-2 x} x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
T^{\prime }&={\mathrm e}^{-t} \sin \left (2 t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
x^{\prime }&=\sec \left (t \right )^{2} \\
x \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y^{\prime }&=x -\frac {1}{3} x^{3} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x^{\prime }&=2 \sin \left (t \right )^{2} \\
x \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
x V^{\prime }&=x^{2}+1 \\
V \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime } x -\sin \left (x \right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime }&=1-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime }&=x -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime }&=x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime }&=1+3 x \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime }&=x +\frac {1}{x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.371 |
|
| \begin{align*}
y^{\prime }&=2 \sin \left (x \right ) \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime }&=x \sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.394 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime }&=t^{2}+t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=t^{2}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime }&=-t^{2}+2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime }&=t^{2}-2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
\theta ^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
y^{\prime }&=t^{2} \left (t^{2}+1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime }&=3-\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime } x&=\arcsin \left (x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime }&=4 x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime }&=20 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime } x +\sqrt {x}&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
\sqrt {x +4}\, y^{\prime }&=1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.245 |
|
| \begin{align*}
y^{\prime }&=x \cos \left (x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right ) x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
x&=\left (x^{2}-9\right ) y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
1&=\left (x^{2}-9\right ) y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
1&=x^{2}-9 y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime }&=40 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
\left (6+x \right )^{{1}/{3}} y^{\prime }&=1 \\
y \left (2\right ) &= 10 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime }&=\frac {x -1}{x +1} \\
y \left (0\right ) &= 8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime } x +2&=\sqrt {x} \\
y \left (1\right ) &= 6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }-\sin \left (x \right )&=0 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 16 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 20 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\
y \left (0\right ) &= 3 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.290 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}+5}} \\
y \left (2\right ) &= 7 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-9 x^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime } x&=\sin \left (x^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x^{2}+1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime }-{\mathrm e}^{2 x}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
x^{2} y^{\prime }-\sqrt {x}&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
\left (2+x \right ) y^{\prime }-x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
y^{\prime }+2 x&=\sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
2 x -1-y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime }&=x \sin \left (x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.288 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x \ln \left (x \right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&=x \ln \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
y^{\prime }&=\frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=\frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {x^{2}-16}}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime }&=\left (-x^{2}+4\right )^{{3}/{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}-16} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right )^{3} \tan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime }&=4 x^{3}-x +2 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
y^{\prime }&=\sin \left (2 t \right )-\cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \\
y \left (\frac {2}{\pi }\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime }&=\frac {\ln \left (x \right )}{x} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x \right )^{4} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
y^{\prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{\sqrt {x^{2}-1}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.283 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )^{2} \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime }&=\frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=x^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.887 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
\sin \left (y \right )^{2}&=x^{\prime } \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
y^{\prime }&=t \sin \left (t^{2}\right ) \\
y \left (\sqrt {\pi }\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
3 t^{2}-y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime }&=x +1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime }&=1-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
\cos \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.632 |
|
| \begin{align*}
{\mathrm e}^{y^{\prime }}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
\tan \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
{\mathrm e}^{y^{\prime }}&=x \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.296 |
|
| \begin{align*}
\tan \left (y^{\prime }\right )&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
x&=\ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.247 |
|
| \begin{align*}
x&=\sin \left (y^{\prime }\right )+y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.175 |
|
| \begin{align*}
x^{2}+y^{\prime } x&=3 x +y^{\prime } \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime } x&=-\frac {1}{\ln \left (x \right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime }&=-x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
33.165 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x}-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\arctan \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.627 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.700 |
|
| \begin{align*}
y^{\prime }&=2 \cos \left (x \right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x \right ) \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }&=1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.736 |
|
| \begin{align*}
x \left (x^{2}-4\right ) y^{\prime }&=1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.753 |
|
| \begin{align*}
\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime }&=2 x^{2}+x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.159 |
|
| \begin{align*}
y^{\prime } x&=2 x^{2}+1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x} \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.673 |
|
| \begin{align*}
x^{\prime }&=3 t^{2}+4 t \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
x^{\prime }&=b \,{\mathrm e}^{t} \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.746 |
|
| \begin{align*}
x^{\prime }&=\frac {1}{t^{2}+1} \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
x^{\prime }&=\frac {1}{\sqrt {t^{2}+1}} \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
x^{\prime }&=\cos \left (t \right ) \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.637 |
|
| \begin{align*}
x^{\prime }&=\frac {\cos \left (t \right )}{\sin \left (t \right )} \\
x \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.203 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{z -y^{\prime }} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
\sec \left (\theta \right )^{2}&=\frac {m s^{\prime }}{k} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
\sqrt {1+v^{\prime }}&=\frac {{\mathrm e}^{u}}{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| \begin{align*}
4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.680 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| \begin{align*}
\left (8 {y^{\prime }}^{3}-27\right ) x&=\frac {12 {y^{\prime }}^{2}}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
63.197 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}&=\left (3 x -1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.950 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
0.998 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}&=\left (3 x -a \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.407 |
|
| \begin{align*}
4 {y^{\prime }}^{2} x \left (x -a \right ) \left (-b +x \right )&=\left (3 x^{2}-2 \left (a +b \right ) x +a b \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime }+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
\frac {\ln \left (1+{y^{\prime }}^{2}\right )}{2}-\ln \left (y^{\prime }\right )-x +2&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
13.818 |
|
| \begin{align*}
x^{3} y^{\prime }-x^{3}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
y^{\prime }&=5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
\frac {1}{x}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime }&=3 \sin \left (x \right ) \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
x^{\prime }&=4 \,{\mathrm e}^{-t}-2 \\
x \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
s^{\prime }&=9 \sqrt {u} \\
s \left (4\right ) &= 16 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.570 |
|
| \begin{align*}
y^{\prime }&=-\frac {4}{x^{2}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.534 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
\left (x^{2}+x \right ) y^{\prime }+2 x +1+2 \cos \left (x \right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime }+2 x&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| \begin{align*}
r^{\prime }&=-a \sin \left (\theta \right ) \\
r \left (0\right ) &= 2 a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
\sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
r^{\prime }&=0 \\
r \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
r^{\prime }&=c \\
r \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}-1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {t^{2}+2 t}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime }&=t \ln \left (t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+1}{t \left (t -2\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.205 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
x -\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
x +\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.295 |
|
| \begin{align*}
a^{2}-x y^{\prime } \sqrt {-a^{2}+x^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
\left (x +a \right ) y^{\prime }&=b x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime }&=t +3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime }&=t \,{\mathrm e}^{-t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime }&=\frac {t +1}{t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t}-1 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime }&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime }&=t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime }&=t^{2}+1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }&=5 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.910 |
|
| \begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (t -T \right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.544 |
|
| \begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )+\operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (-1+t \right )+\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime }&=A \cos \left (\omega t \right )+B \sin \left (\omega t \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime }&=2 \,{\mathrm e}^{2 t}-4 \,{\mathrm e}^{t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.667 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.760 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.215 |
|
| \begin{align*}
y^{\prime }&=\sin \left (5 x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
y^{\prime }&=\left (x +1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
1+{\mathrm e}^{3 x} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|