| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\sqrt {x +y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| \begin{align*}
y^{\prime }&=\left (4 x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.024 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.198 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.747 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
y^{\prime }&=\left (4 x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.057 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.915 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x +2 y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.316 |
|
| \begin{align*}
y^{\prime }&=\left (9 x -y\right )^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.495 |
|
| \begin{align*}
y^{\prime }&=\left (4 x +y+2\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.997 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y^{\prime }&=\left (3+x -4 y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
6.497 |
|
| \begin{align*}
y^{\prime }&=\left (1+4 x +9 y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
15.109 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.258 |
|
| \begin{align*}
\left (y-4 x -1\right )^{2}-y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
7.717 |
|
| \begin{align*}
y^{\prime }&=\left (x +y+2\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.077 |
|
| \begin{align*}
y^{\prime }&=\left (2 x +y-1\right )^{2} \\
\end{align*} | [[_homogeneous, ‘class C‘], _Riccati] | ✓ | ✓ | ✓ | ✓ | 4.912 |
|
| \begin{align*}
y^{\prime }&=\left (x +y+1\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.864 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1+6 x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.865 |
|
| \begin{align*}
y^{\prime }&=\left (1+6 x +y\right )^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.687 |
|
| \begin{align*}
y^{\prime }&=\left (1+6 x +y\right )^{{1}/{4}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.257 |
|
| \begin{align*}
y^{\prime }&=\left (a +b x +y\right )^{4} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.762 |
|
| \begin{align*}
y^{\prime }&=\left (\pi +x +7 y\right )^{{7}/{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
15.158 |
|
| \begin{align*}
y^{\prime }&=\left (a +b x +c y\right )^{6} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.083 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{4} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| \begin{align*}
y^{\prime }-\left (x +y\right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.100 |
|
| \begin{align*}
x^{\prime }&=\left (4 t -x\right )^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.206 |
|
| \begin{align*}
x^{\prime }&=\left (t +x\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.063 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\left (3 x +3 y+2\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.794 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.924 |
|
| \begin{align*}
1-\left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| \begin{align*}
y^{\prime }&=\left (x +y-4\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.576 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.930 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.274 |
|
| \begin{align*}
y^{\prime }&=\left (4 x +y+1\right )^{2} \\
\end{align*} | [[_homogeneous, ‘class C‘], _Riccati] | ✓ | ✓ | ✓ | ✓ | 5.140 |
|
| \begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.276 |
|
| \begin{align*}
y^{\prime }&=\sqrt {2 x +3 y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
s^{\prime }&=\frac {1}{s+t +1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.109 |
|
| \begin{align*}
y^{\prime }&=\left (9 x +4 y+1\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
32.637 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\left (t +y\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.545 |
|