2.4.14 first order ode flip role

Table 2.1077: first order ode flip role [42]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

3001

\begin{align*} 1+x y \left (x y^{2}+1\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9.896

4390

\begin{align*} 2 y^{\prime } x -y&=y^{\prime } \ln \left (y^{\prime } y\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

42.170

4408

\begin{align*} y^{\prime }&=\frac {1}{y x +x^{3} y^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.568

4709

\begin{align*} y^{\prime }&=a x +b \sqrt {y} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Chini]

8.402

4840

\begin{align*} \left (x +1\right ) y^{\prime }&=1+y+\left (x +1\right ) \sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

46.320

5270

\begin{align*} x \left (x^{3}-3 x^{3} y+4 y^{2}\right ) y^{\prime }&=6 y^{3} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.326

5324

\begin{align*} \left (x +2 y+2 x^{2} y^{3}+y^{4} x \right ) y^{\prime }+\left (1+y^{4}\right ) y&=0 \\ \end{align*}

[_rational]

4.911

5565

\begin{align*} x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_rational]

164.372

6992

\begin{align*} \left (x +1\right ) y^{\prime }-1-y&=\left (x +1\right ) \sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

41.116

7880

\begin{align*} x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.634

11359

\begin{align*} y^{\prime }-a \sqrt {y}-b x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Chini]

8.155

11614

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }-1&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.050

11621

\begin{align*} \left (x +2 y+2 x^{2} y^{3}+y^{4} x \right ) y^{\prime }+y^{5}+y&=0 \\ \end{align*}

[_rational]

6.665

11772

\begin{align*} a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y&=0 \\ \end{align*}

[_rational]

209.451

11983

\begin{align*} y^{\prime }&=\frac {1}{x \left (x y^{2}+1+x \right ) y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.548

12009

\begin{align*} y^{\prime }&=\frac {\left (2 x +2+y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

14.767

12052

\begin{align*} y^{\prime }&=\frac {2 y^{6}}{y^{3}+2+16 x y^{2}+32 x^{2} y^{4}} \\ \end{align*}

[_rational]

11.144

12080

\begin{align*} y^{\prime }&=\frac {\left (x +y+1\right ) y}{\left (x +y+2 y^{3}\right ) \left (x +1\right )} \\ \end{align*}

[_rational]

13.635

12114

\begin{align*} y^{\prime }&=\frac {\left (x +y+1\right ) y}{\left (y^{4}+y^{3}+y^{2}+x \right ) \left (x +1\right )} \\ \end{align*}

[_rational]

12.937

12118

\begin{align*} y^{\prime }&=\frac {y \left (x -y\right ) \left (1+y\right )}{x \left (y x +x -y\right )} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

48.167

12125

\begin{align*} y^{\prime }&=\frac {y \left (x +y\right ) \left (1+y\right )}{x \left (y x +x +y\right )} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

48.372

12198

\begin{align*} y^{\prime }&=\frac {2 y^{8}}{y^{5}+2 y^{6}+2 y^{2}+16 y^{4} x +32 y^{6} x^{2}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \\ \end{align*}

[_rational]

10.876

12200

\begin{align*} y^{\prime }&=\frac {2 y^{6} \left (1+4 x y^{2}+y^{2}\right )}{y^{3}+4 x y^{5}+y^{5}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \\ \end{align*}

[_rational]

18.220

12228

\begin{align*} y^{\prime }&=-\frac {216 y}{-216 y^{4}-252 y^{3}-396 y^{2}-216 y+36 x^{2}-72 y x +60 y^{5}-36 x y^{3}-72 x y^{2}-24 y^{4} x +4 y^{8}+12 y^{7}+33 y^{6}} \\ \end{align*}

[_rational]

12.977

12246

\begin{align*} y^{\prime }&=-\frac {1296 y}{216-648 x^{2} y+216 x^{2}-432 y x -882 y^{6}-216 x^{2} y^{4}-1296 y+216 x y^{2}-1944 y^{4}+1080 x y^{3}-570 y^{8}-648 y^{2} x^{2}+216 y^{7} x -1728 y^{3}+72 y^{8} x +216 x^{3}-2376 y^{2}-612 y^{5}-324 x^{2} y^{3}+594 x y^{6}+1080 x y^{5}+1152 y^{4} x -846 y^{7}-126 y^{10}-8 y^{12}-36 y^{11}-315 y^{9}} \\ \end{align*}

[_rational]

12.604

12250

\begin{align*} y^{\prime }&=-\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{-648 x^{2} y-1296 y x +2484 y^{6}-216 x^{2} y^{4}-1296 y-1944 x y^{2}+2808 y^{4}-648 x y^{3}-18 y^{8}-648 y^{2} x^{2}+216 y^{7} x +1728 y^{3}+72 y^{8} x +216 x^{3}-1296 y^{2}+4428 y^{5}-324 x^{2} y^{3}+594 x y^{6}+1080 x y^{5}-432 y^{4} x +594 y^{7}-126 y^{10}-8 y^{12}-36 y^{11}-315 y^{9}} \\ \end{align*}

[_rational]

23.492

13996

\begin{align*} y^{\prime }-\frac {1+y}{x +1}&=\sqrt {1+y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

45.606

15376

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.659

17965

\begin{align*} y^{\prime } y+1&=\left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.957

19085

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.475

19957

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5.847

20280

\begin{align*} y^{\prime }+\frac {\tan \left (y\right )}{x}&=\frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

42.804

20320

\begin{align*} y^{\prime }+\frac {\tan \left (y\right )}{x}&=\frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

43.510

21454

\begin{align*} y^{\prime }&=\frac {1}{x^{2} y^{3}+y x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12.730

22340

\begin{align*} y^{\prime }&=\frac {1}{y^{2}+x^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.926

22341

\begin{align*} y^{\prime }&=\frac {1}{y^{2}+x^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

58.167

22344

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-y^{2}} \\ y \left (1\right ) &= 2 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.347

22354

\begin{align*} y^{\prime }&=\frac {1}{x^{2}+4 y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

0.804

23146

\begin{align*} y^{4}+\left (x^{2}-3 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.189

23945

\begin{align*} y^{\prime }&=\frac {1}{x^{5}+y x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

6.366

24317

\begin{align*} \sin \left (y\right ) \left (x +\sin \left (y\right )\right )+2 x^{2} y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

50.772

24326

\begin{align*} 3 \sin \left (y\right )-5 x +2 x^{2} \cot \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

53.100