| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.834 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.164 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.858 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.207 |
|
| \begin{align*}
y^{\prime } y&=x \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| \begin{align*}
y^{3} y^{\prime }&=\left (1+y^{4}\right ) \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| \begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\
y \left (5\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.478 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2}+3 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.297 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.091 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}+2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.129 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.318 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.986 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.206 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{3} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.137 |
|
| \begin{align*}
y^{2} y^{\prime }+2 x y^{3}&=6 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime } x +6 y&=3 x y^{{4}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.424 |
|
| \begin{align*}
2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x}&=2 y x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.633 |
|
| \begin{align*}
y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1}&=x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.792 |
|
| \begin{align*}
3 y^{2} y^{\prime }+y^{3}&={\mathrm e}^{-x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.244 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| \begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.383 |
|
| \begin{align*}
x^{\prime }&=x-x^{2} \\
x \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.887 |
|
| \begin{align*}
x^{\prime }&=10 x-x^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.713 |
|
| \begin{align*}
x^{\prime }&=3 x \left (5-x\right ) \\
x \left (0\right ) &= 8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
x^{\prime }&=3 x \left (5-x\right ) \\
x \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
x^{\prime }&=4 x \left (7-x\right ) \\
x \left (0\right ) &= 11 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.749 |
|
| \begin{align*}
x^{\prime }&=7 x \left (x-13\right ) \\
x \left (0\right ) &= 17 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| \begin{align*}
x y^{2}+3 y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.937 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.813 |
|
| \begin{align*}
y^{\prime } x +2 y&=6 \sqrt {y}\, x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.158 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.372 |
|
| \begin{align*}
4 x y^{2}+y^{\prime }&=5 x^{4} y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.962 |
|
| \begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.067 |
|
| \begin{align*}
2 x^{2} y-x^{3} y^{\prime }&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
62.662 |
|
| \begin{align*}
3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| \begin{align*}
y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.816 |
|
| \begin{align*}
9 y^{2} x^{2}+x^{{3}/{2}} y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.519 |
|
| \begin{align*}
3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.108 |
|
| \begin{align*}
y^{\prime }&=x y^{3}-y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.663 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}+2 y^{2}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.190 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}-y}{\tan \left (x \right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.522 |
|
| \begin{align*}
y^{\prime }+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.717 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.533 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.109 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.910 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.319 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.922 |
|
| \begin{align*}
y^{\prime } y&=x \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.205 |
|
| \begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\
y \left (5\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.940 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2}+3 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.895 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.165 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.567 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.198 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.296 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.984 |
|
| \begin{align*}
y^{2} y^{\prime }+2 x y^{3}&=6 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.650 |
|
| \begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.789 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.686 |
|
| \begin{align*}
y^{\prime } x +6 y&=3 x y^{{4}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.001 |
|
| \begin{align*}
2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x}&=2 y x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.967 |
|
| \begin{align*}
y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1}&=x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.540 |
|
| \begin{align*}
3 y^{2} y^{\prime }+y^{3}&={\mathrm e}^{-x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| \begin{align*}
x y^{2}+3 y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.987 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.275 |
|
| \begin{align*}
2 x y^{2}+x^{2} y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.016 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.824 |
|
| \begin{align*}
y^{\prime } x +2 y&=6 \sqrt {y}\, x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.967 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.386 |
|
| \begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
54.609 |
|
| \begin{align*}
2 x^{2} y-x^{3} y^{\prime }&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.489 |
|
| \begin{align*}
3 x^{5} y^{2}+x^{3} y^{\prime }&=2 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.505 |
|
| \begin{align*}
9 y^{2} x^{2}+x^{{3}/{2}} y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.504 |
|
| \begin{align*}
3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=x y^{3}-y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.477 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 x^{2}-2 y^{2}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.849 |
|
| \begin{align*}
y^{\prime }&=\cot \left (x \right ) \left (\sqrt {y}-y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.562 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.075 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.559 |
|
| \begin{align*}
\sin \left (x \right ) y^{2}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.263 |
|
| \begin{align*}
y^{\prime }&=\left (1-2 x \right ) y^{2} \\
y \left (0\right ) &= -{\frac {1}{6}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.228 |
|
| \begin{align*}
y^{\prime }&=\frac {1-2 x}{y} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.275 |
|
| \begin{align*}
x +y y^{\prime } {\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.892 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}}{x} \\
r \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.218 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{y+x^{2} y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.792 |
|
| \begin{align*}
y^{\prime }&=\frac {x y^{2}}{\sqrt {x^{2}+1}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.846 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (x^{2}+1\right )}{4 y^{3}} \\
y \left (0\right ) &= -\frac {\sqrt {2}}{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| \begin{align*}
\sqrt {-x^{2}+1}\, y^{2} y^{\prime }&=\arcsin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.464 |
|
| \begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.292 |
|
| \begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.715 |
|
| \begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.464 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.132 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
60.890 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.226 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.556 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.346 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
y^{\prime }&=t \left (3-y\right ) y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.639 |
|
| \begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
y^{\prime }&=-y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.868 |
|
| \begin{align*}
y^{\prime }&=a y+b y^{2} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.954 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| \begin{align*}
y^{\prime }&=-b \sqrt {y}+a y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.998 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (1+y\right )}{x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| \begin{align*}
y^{\prime }&=a y^{\frac {a -1}{a}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
y^{\prime } x +y^{2}+y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.670 |
|
| \begin{align*}
y^{\prime }+x \left (y^{2}+y\right )&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.974 |
|
| \begin{align*}
y^{\prime }&=2 x y \left (1+y^{2}\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
6.231 |
|
| \begin{align*}
y^{\prime }&=2 y-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
y \left (3\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.931 |
|
| \begin{align*}
y^{\prime }&=a y-b y^{2} \\
y \left (0\right ) &= \operatorname {y0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.671 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{5}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.964 |
|
| \begin{align*}
y^{\prime }-y&=x y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.015 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
7 y^{\prime } x -2 y&=-\frac {x^{2}}{y^{6}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y&=2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=\frac {1}{\left (x^{2}+1\right ) y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime }-y x&=x^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
y^{\prime }-\frac {\left (x +1\right ) y}{3 x}&=y^{4} \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 0.207 |
|
| \begin{align*}
y^{\prime }-2 y&=x y^{3} \\
y \left (0\right ) &= 2 \sqrt {2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime } x +y&=y^{4} x^{4} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime }-2 y&=2 \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| \begin{align*}
y^{\prime }-4 y&=\frac {48 x}{y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{3} \\
y \left (1\right ) &= \frac {\sqrt {2}}{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime }-y&=x \sqrt {y} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
0.317 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
x y^{3} y^{\prime }&=y^{4}+x^{4} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.239 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.544 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+y^{3}}{y^{2} x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.164 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.008 |
|
| \begin{align*}
x y^{\prime } y&=3 x^{2}+4 y^{2} \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.839 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=y^{3}+x \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
x y^{\prime } y&=3 x^{6}+6 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.704 |
|
| \begin{align*}
\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left ({\mathrm e}^{x}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.931 |
|
| \begin{align*}
{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.894 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.438 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.517 |
|
| \begin{align*}
3 y^{2} x^{2}+2 y+2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.567 |
|
| \begin{align*}
t^{2} \left (1+y^{2}\right )+2 y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t}{y+t^{2} y} \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.913 |
|
| \begin{align*}
\sqrt {t^{2}+1}\, y^{\prime }&=\frac {t y^{3}}{\sqrt {t^{2}+1}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.210 |
|
| \begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.309 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\
y \left (0\right ) &= 100 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.608 |
|
| \begin{align*}
t^{2} \left (1+y^{2}\right )+2 y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.219 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t}{y+t^{2} y} \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.907 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{t}+\frac {y^{2}}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.027 |
|
| \begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
61.787 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \\
y \left (0\right ) &= 100 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.016 |
|
| \begin{align*}
y^{\prime }&=t y^{a} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✗ |
19.727 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.163 |
|
| \begin{align*}
y^{\prime }&=t y^{3}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
x^{\prime }&=x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
x^{\prime }&=-x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.743 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.849 |
|
| \begin{align*}
x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.517 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.572 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
y^{2}+y^{\prime } y+x^{2} y y^{\prime }-1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.181 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=0 \\
y \left (3\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| \begin{align*}
\left (x^{2}+3 x \right ) y^{\prime }&=y^{3}+2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
12.391 |
|
| \begin{align*}
y^{2}+x^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.523 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.456 |
|
| \begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.039 |
|
| \begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.901 |
|
| \begin{align*}
y \left (y-x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.410 |
|
| \begin{align*}
{\mathrm e}^{x} y^{\prime }&=2 x y^{2}+{\mathrm e}^{x} y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.566 |
|
| \begin{align*}
2 x^{2} y y^{\prime }+{\mathrm e}^{x} x^{4}-2 x y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.372 |
|
| \begin{align*}
y \left (1-x^{4} y^{2}\right )+y^{\prime } x&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.602 |
|
| \begin{align*}
3 y^{2} y^{\prime }-x y^{3}&={\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.543 |
|
| \begin{align*}
y^{3} y^{\prime }+y^{4} x&=x \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.542 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.098 |
|
| \begin{align*}
y^{\prime }-y x&=\sqrt {y}\, x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.954 |
|
| \begin{align*}
t x^{\prime }+x \left (1-x^{2} t^{4}\right )&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.898 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.777 |
|
| \begin{align*}
y^{\prime }-y x&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.745 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} x^{2} \cos \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.710 |
|
| \begin{align*}
r^{\prime }+\left (r-\frac {1}{r}\right ) \theta &=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.829 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 x^{3} y^{{4}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.023 |
|
| \begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x}{y^{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.514 |
|
| \begin{align*}
y+y^{\prime }&=y^{2} {\mathrm e}^{-t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.699 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
0.606 |
|
| \begin{align*}
y-y^{\prime } x&=2 y^{\prime }+2 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.411 |
|
| \begin{align*}
2 x^{3}-y^{3}-3 x +3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.294 |
|
| \begin{align*}
3 x -6&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.506 |
|
| \begin{align*}
2 y^{\prime } x -y+\frac {x^{2}}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.190 |
|
| \begin{align*}
y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.810 |
|
| \begin{align*}
y^{\prime } x -5 y-x \sqrt {y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.300 |
|
| \begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.113 |
|
| \begin{align*}
y^{\prime } x -2 y-2 y^{3} x^{4}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.078 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{6} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.764 |
|
| \begin{align*}
x^{\prime }&=x+x^{2} {\mathrm e}^{\theta } \\
x \left (0\right ) &= 2 \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.190 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.489 |
|
| \begin{align*}
4 x y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.567 |
|
| \begin{align*}
2 \left (x^{2}+1\right ) y^{\prime }&=\left (2 y^{2}-1\right ) x y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.313 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.484 |
|
| \begin{align*}
y^{\prime }&=-y^{3} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
30.428 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{t}}{y} \\
y \left (\ln \left (2\right )\right ) &= -8 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.097 |
|
| \begin{align*}
y^{\prime }&=-\frac {t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.222 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| \begin{align*}
y^{\prime }-x y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.106 |
|
| \begin{align*}
x^{2} y^{\prime }+x y^{2}&=4 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.241 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 x^{2}+y^{2}+x}{y x} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.782 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y^{2}}{x^{2}}-y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.333 |
|
| \begin{align*}
y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.043 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.483 |
|
| \begin{align*}
y^{\prime }&=y^{3} \sin \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.685 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.950 |
|
| \begin{align*}
y^{\prime }&=\frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \\
y \left (\pi \right ) &= \frac {1}{\pi } \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
28.832 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=\frac {4 x^{2} \cos \left (x \right )}{y} \\
\end{align*} | [[_homogeneous, ‘class D‘], _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.526 |
|
| \begin{align*}
y^{\prime }+\frac {\tan \left (x \right ) y}{2}&=2 y^{3} \sin \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.891 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{2 x}&=6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 \sqrt {x^{2}+1}\, \sqrt {y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.645 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 x^{4} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.513 |
|
| \begin{align*}
2 x \left (y^{\prime }+x^{2} y^{3}\right )+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.182 |
|
| \begin{align*}
\left (x -a \right ) \left (-b +x \right ) \left (y^{\prime }-\sqrt {y}\right )&=2 \left (b -a \right ) y \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.529 |
|
| \begin{align*}
y^{\prime }+\frac {6 y}{x}&=\frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.575 |
|
| \begin{align*}
y^{\prime }+4 y x&=4 x^{3} \sqrt {y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| \begin{align*}
y^{\prime }-\frac {y}{2 x \ln \left (x \right )}&=2 x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| \begin{align*}
y^{\prime }-\frac {y}{\left (-1+\pi \right ) x}&=\frac {3 x y^{\pi }}{1-\pi } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.460 |
|
| \begin{align*}
2 y^{\prime }+\cot \left (x \right ) y&=\frac {8 \cos \left (x \right )^{3}}{y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
31.095 |
|
| \begin{align*}
\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right )&=y^{\sqrt {3}} \sec \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.295 |
|
| \begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.752 |
|
| \begin{align*}
y^{\prime }+\cot \left (x \right ) y&=y^{3} \sin \left (x \right )^{3} \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.581 |
|
| \begin{align*}
x^{2}+x -1+\left (2 y x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }-y^{2} x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.767 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.422 |
|
| \begin{align*}
y^{\prime } y&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| \begin{align*}
3 y^{2} y^{\prime }&=2 x -1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.815 |
|
| \begin{align*}
y^{\prime }&=6 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.878 |
|
| \begin{align*}
y^{\prime } x&=2 y \left (y-1\right ) \\
y \left (\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.565 |
|
| \begin{align*}
y \,{\mathrm e}^{2 x} y^{\prime }+2 x&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.873 |
|
| \begin{align*}
x y^{\prime } y&=2 x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.196 |
|
| \begin{align*}
x^{2}-y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.287 |
|
| \begin{align*}
x^{2} y^{\prime }-2 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.703 |
|
| \begin{align*}
x y^{3}+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.202 |
|
| \begin{align*}
2+y^{2}+2 x +2 y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.958 |
|
| \begin{align*}
1-\left (y-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.000 |
|
| \begin{align*}
3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
x y^{\prime } y+y^{2}-\sin \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
2 x^{3}-y^{4}+x y^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y+y^{2} \cos \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
x y^{2} \left (y^{\prime } x +y\right )&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.178 |
|
| \begin{align*}
1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} | [_exact, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 6.635 |
|
| \begin{align*}
{\mathrm e}^{x}+3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| \begin{align*}
2 x^{3} y y^{\prime }+3 y^{2} x^{2}+7&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| \begin{align*}
x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.338 |
|
| \begin{align*}
2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.612 |
|
| \begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.501 |
|
| \begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.250 |
|
| \begin{align*}
y^{\prime }&=x y \left (3+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.095 |
|
| \begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| \begin{align*}
y^{\prime }&=\left (a +b y \cos \left (k x \right )\right ) y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.106 |
|
| \begin{align*}
y^{\prime }&=y \left (a +b y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.595 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.518 |
|
| \begin{align*}
y^{\prime }+y \left (1-x y^{2}\right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.473 |
|
| \begin{align*}
y^{\prime }+2 x y \left (1+a \,x^{2} y^{2}\right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.465 |
|
| \begin{align*}
y^{\prime }+2 x y \left (1-a \,x^{2} y^{2}\right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.455 |
|
| \begin{align*}
y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.329 |
|
| \begin{align*}
y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.470 |
|
| \begin{align*}
y^{\prime }&=\left (\tan \left (x \right )+y^{3} \sec \left (x \right )\right ) y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| \begin{align*}
y^{\prime }&=f \left (x \right ) y+g \left (x \right ) y^{k} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
y^{\prime }+2 y \left (1-x \sqrt {y}\right )&=0 \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.593 |
|
| \begin{align*}
y^{\prime } x +\left (-y x +1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.999 |
|
| \begin{align*}
y^{\prime } x&=\left (-y x +1\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.455 |
|
| \begin{align*}
y^{\prime } x&=\left (y x +1\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.495 |
|
| \begin{align*}
y^{\prime } x&=a \,x^{3} \left (-y x +1\right ) y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.800 |
|
| \begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| \begin{align*}
y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.715 |
|
| \begin{align*}
y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.384 |
|
| \begin{align*}
y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.606 |
|
| \begin{align*}
y^{\prime } x +y \left (1-x y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| \begin{align*}
y^{\prime } x +y&=a \left (x^{2}+1\right ) y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.020 |
|
| \begin{align*}
y^{\prime } x +y&=a \left (-x^{2}+1\right ) y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.933 |
|
| \begin{align*}
y^{\prime } x&=a y+b \left (x^{2}+1\right ) y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.860 |
|
| \begin{align*}
y^{\prime } x&=a y+b \left (-x^{2}+1\right ) y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.793 |
|
| \begin{align*}
y^{\prime } x +2 y&=a \,x^{2 k} y^{k} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.027 |
|
| \begin{align*}
y^{\prime } x&=4 y-4 \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.976 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=a y+b x y^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.997 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.348 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=\left (1-x y^{3}\right ) y \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.533 |
|
| \begin{align*}
\left (x +a \right ) y^{\prime }&=y \left (1-a y\right ) \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.418 |
|
| \begin{align*}
\left (a -x \right ) y^{\prime }&=y+\left (c x +b \right ) y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.451 |
|
| \begin{align*}
2 y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.633 |
|
| \begin{align*}
2 y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.075 |
|
| \begin{align*}
2 y^{\prime } x&=\left (1+x -6 y^{2}\right ) y \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.016 |
|
| \begin{align*}
2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.968 |
|
| \begin{align*}
3 y^{\prime } x&=\left (2+x y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.251 |
|
| \begin{align*}
3 y^{\prime } x&=\left (3 y^{3} \ln \left (x \right ) x +1\right ) y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.720 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (x +a y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.850 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (a x +b y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
42.598 |
|
| \begin{align*}
x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| \begin{align*}
x^{2} y^{\prime }&=2 y \left (x -y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.618 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (a x +y^{3} b \right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.315 |
|
| \begin{align*}
x^{2} y^{\prime }+y x +\sqrt {y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.095 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.642 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=x y \left (1+a y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.970 |
|
| \begin{align*}
\left (-x^{2}+4\right ) y^{\prime }+4 y&=\left (2+x \right ) y^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.882 |
|
| \begin{align*}
\left (a^{2}+x^{2}\right ) y^{\prime }+y \left (x -y\right )&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.830 |
|
| \begin{align*}
\left (-a^{2}+x^{2}\right ) y^{\prime }+y \left (x -y\right )&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.897 |
|
| \begin{align*}
\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 7.030 |
|
| \begin{align*}
\left (-a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.551 |
|
| \begin{align*}
x \left (x +a \right ) y^{\prime }&=\left (b +c y\right ) y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.996 |
|
| \begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }&=c y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.620 |
|
| \begin{align*}
x^{3} y^{\prime }&=y \left (y+x^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.371 |
|
| \begin{align*}
x^{3} y^{\prime }&=\left (x +1\right ) y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.045 |
|
| \begin{align*}
x^{3} y^{\prime }&=\left (2 x^{2}+y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
74.351 |
|
| \begin{align*}
x^{2} \left (1-x \right ) y^{\prime }&=x \left (-x +2\right ) y-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.092 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (x^{2}-y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
41.958 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=\left (3 x^{2}+a y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.137 |
|
| \begin{align*}
6 x^{3} y^{\prime }&=4 x^{2} y+\left (1-3 x \right ) y^{4} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.124 |
|
| \begin{align*}
x^{4} y^{\prime }&=\left (x^{3}+y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.155 |
|
| \begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime }&=\left (x -3 x^{3} y\right ) y \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.828 |
|
| \begin{align*}
y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right )&=y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
10.925 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.723 |
|
| \begin{align*}
y^{\prime } y+x \,{\mathrm e}^{x^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
y^{\prime } y+4 x \left (x +1\right )+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.893 |
|
| \begin{align*}
y^{\prime } y&=a x +b y^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.379 |
|
| \begin{align*}
y^{\prime } y&=b \cos \left (x +c \right )+a y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.122 |
|
| \begin{align*}
y^{\prime } y&=a x +b x y^{2} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.220 |
|
| \begin{align*}
y^{\prime } y&=\csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.021 |
|
| \begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.566 |
|
| \begin{align*}
2 y^{\prime } y&=x y^{2}+x^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.734 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.253 |
|
| \begin{align*}
x y^{\prime } y&=x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.377 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.776 |
|
| \begin{align*}
x y^{\prime } y+x^{4}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.319 |
|
| \begin{align*}
x y^{\prime } y&=a \,x^{3} \cos \left (x \right )+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.272 |
|
| \begin{align*}
x y^{\prime } y&=a +b y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.636 |
|
| \begin{align*}
x y^{\prime } y&=a \,x^{n}+b y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
4.084 |
|
| \begin{align*}
x y^{\prime } y&=\left (x^{2}+1\right ) \left (1-y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.082 |
|
| \begin{align*}
2 x y^{\prime } y+1-2 x^{3}-y^{2}&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| \begin{align*}
2 x y^{\prime } y+a +y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| \begin{align*}
2 x y^{\prime } y&=a x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.707 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.998 |
|
| \begin{align*}
2 x y^{\prime } y&=4 x^{2} \left (2 x +1\right )+y^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.075 |
|
| \begin{align*}
2 x y^{\prime } y+x^{2} \left (a \,x^{3}+1\right )&=6 y^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.655 |
|
| \begin{align*}
2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2}&=0 \\
\end{align*} | [_exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.803 |
|
| \begin{align*}
a x y y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.466 |
|
| \begin{align*}
a x y y^{\prime }+x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.036 |
|
| \begin{align*}
\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2}&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.715 |
|
| \begin{align*}
2 x^{2} y y^{\prime }&=x^{2} \left (2 x +1\right )-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.338 |
|
| \begin{align*}
2 \left (x +1\right ) x y y^{\prime }&=1+y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.376 |
|
| \begin{align*}
3 x^{2} y y^{\prime }+1+2 x y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| \begin{align*}
2 x^{3} y y^{\prime }+a +3 y^{2} x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.733 |
|
| \begin{align*}
x y \left (b \,x^{2}+a \right ) y^{\prime }&=A +B y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| \begin{align*}
3 x^{4} y y^{\prime }&=1-2 x^{3} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
3 y^{2} y^{\prime }&=1+x +a y^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.994 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=2 x -y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.827 |
|
| \begin{align*}
6 y^{2} y^{\prime } x +x +2 y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.059 |
|
| \begin{align*}
x^{2} y^{2} y^{\prime }+1-x +x^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.131 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.464 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.494 |
|
| \begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.641 |
|
| \begin{align*}
\left (-x^{2}+1\right ) z^{\prime }-x z&=a x z^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.769 |
|
| \begin{align*}
3 z^{2} z^{\prime }-a z^{3}&=x +1 \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.692 |
|
| \begin{align*}
z^{\prime }+2 x z&=2 a \,x^{3} z^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.701 |
|
| \begin{align*}
z^{\prime }+z \cos \left (x \right )&=z^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.079 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.343 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.224 |
|
| \begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.721 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
y^{\prime } x +x y^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.135 |
|
| \begin{align*}
y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.882 |
|
| \begin{align*}
x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.602 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {y^{2}}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.103 |
|
| \begin{align*}
2 \cos \left (x \right ) y^{\prime }&=y \sin \left (x \right )-y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.848 |
|
| \begin{align*}
2 x y^{\prime } y+\left (x +1\right ) y^{2}&={\mathrm e}^{x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.488 |
|
| \begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| \begin{align*}
y^{\prime } x +y&=x^{2} \left ({\mathrm e}^{x}+1\right ) y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| \begin{align*}
y^{\prime }+8 x^{3} y^{3}+2 y x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.881 |
|
| \begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.623 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.763 |
|
| \begin{align*}
2 x y^{\prime } y+3 x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.786 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.575 |
|
| \begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.461 |
|
| \begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.095 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
y \left (5\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.123 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y^{2}+x}{x^{2} y-y} \\
y \left (\sqrt {2}\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.629 |
|
| \begin{align*}
y^{\prime } y+x y^{2}-8 x&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.348 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.457 |
|
| \begin{align*}
y^{\prime }+y&=x y^{{2}/{3}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=2 x^{{3}/{2}} \sqrt {y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.346 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +3 y^{3}&=1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.970 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| \begin{align*}
3 x^{3} y^{2} y^{\prime }-x^{2} y^{3}&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.108 |
|
| \begin{align*}
y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| \begin{align*}
y^{\prime }+y x&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.142 |
|
| \begin{align*}
\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| \begin{align*}
y^{\prime } x&=\frac {1}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.242 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.181 |
|
| \begin{align*}
x v^{\prime }&=\frac {1-4 v^{2}}{3 v} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.564 |
|
| \begin{align*}
x^{\prime }-x^{3}&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.138 |
|
| \begin{align*}
\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.148 |
|
| \begin{align*}
x^{2}+2 y^{\prime } y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.987 |
|
| \begin{align*}
\sqrt {y}+\left (x +1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
6.318 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x^{2}}}{y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.496 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.036 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.134 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.257 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.233 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.121 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.177 |
|
| \begin{align*}
2 y+y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.809 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.470 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| \begin{align*}
2 x y^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.739 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| \begin{align*}
2 t x x^{\prime }+t^{2}-x^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 7.367 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{3} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.421 |
|
| \begin{align*}
y \,{\mathrm e}^{-2 x}+y^{3}-{\mathrm e}^{-2 x} y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.687 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.492 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.240 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.744 |
|
| \begin{align*}
y^{\prime }-y&={\mathrm e}^{2 x} y^{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.055 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}-y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.513 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x -2}&=5 \left (x -2\right ) \sqrt {y} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.233 |
|
| \begin{align*}
x^{\prime }+t x^{3}+\frac {x}{t}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.793 |
|
| \begin{align*}
y^{\prime }+y&=\frac {{\mathrm e}^{x}}{y^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.216 |
|
| \begin{align*}
r^{\prime }&=r^{2}+\frac {2 r}{t} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.691 |
|
| \begin{align*}
y^{\prime }+x y^{3}+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.145 |
|
| \begin{align*}
2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.352 |
|
| \begin{align*}
t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.234 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.283 |
|
| \begin{align*}
x^{2}+y^{2}+3 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 7.857 |
|
| \begin{align*}
2 y+y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
64.297 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=-\frac {4 x}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.437 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (1\right ) &= -4 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| \begin{align*}
2 y^{2}+4 x^{2}-x y^{\prime } y&=0 \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.095 |
|
| \begin{align*}
\sqrt {y}+\left (x^{2}+4\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.895 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=\frac {1}{y x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.148 |
|
| \begin{align*}
y^{\prime }-4 y&=2 x y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.618 |
|
| \begin{align*}
y^{\prime }&=2 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.147 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.115 |
|
| \begin{align*}
3 y^{\prime } x +y+x^{2} y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.247 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.661 |
|
| \begin{align*}
y^{\prime } x +3 y&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.927 |
|
| \begin{align*}
x^{3}+y^{3}&=3 y^{2} y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.801 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime }+y&=y^{4} {\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
2 y^{\prime }+y&=y^{3} \left (x -1\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
y^{\prime }-2 \tan \left (x \right ) y&=y^{2} \tan \left (x \right )^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime }+\tan \left (x \right ) y&=y^{3} \sec \left (x \right )^{4} \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.077 |
|
| \begin{align*}
y^{\prime }-\cot \left (x \right ) y&=y^{2} \sec \left (x \right )^{2} \\
y \left (\frac {\pi }{4}\right ) &= -1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.789 |
|
| \begin{align*}
x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.646 |
|
| \begin{align*}
\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}}&=1 \\
r \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.586 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.546 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
32.855 |
|
| \begin{align*}
y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.369 |
|
| \begin{align*}
y^{2}-x^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.424 |
|
| \begin{align*}
x^{3}+y^{3}+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.441 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.454 |
|
| \begin{align*}
y^{2}+y x -y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
y \left (x -2 y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.247 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.841 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.663 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} {\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.694 |
|
| \begin{align*}
y^{\prime } x +y-x^{3} y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.390 |
|
| \begin{align*}
y^{\prime } y-x y^{2}+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.474 |
|
| \begin{align*}
2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right )&=0 \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 7.924 |
|
| \begin{align*}
2 x y^{5}-y+2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.606 |
|
| \begin{align*}
x y^{3}-y^{3}-{\mathrm e}^{x} x^{2}+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.090 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.996 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.974 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.942 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.046 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.253 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.761 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.025 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.616 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (3\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.881 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.076 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.869 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.617 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
9.802 |
|
| \begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.280 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.549 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.682 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.493 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| \begin{align*}
\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.866 |
|
| \begin{align*}
p^{\prime }&=p-p^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.979 |
|
| \begin{align*}
y^{\prime }&=y^{2} \sin \left (x^{2}\right ) \\
y \left (-2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.195 |
|
| \begin{align*}
y^{\prime }&=\frac {1+3 x}{2 y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.492 |
|
| \begin{align*}
\sin \left (x \right )+y^{\prime } y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.302 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✗ | 5.456 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (2\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.418 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.007 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.898 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.830 |
|
| \begin{align*}
y^{\prime }&=\frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.492 |
|
| \begin{align*}
\left (\sqrt {x}+x \right ) y^{\prime }&=\sqrt {y}+y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.869 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
52.256 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{\sqrt {x}}}{y} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.317 |
|
| \begin{align*}
y^{\prime }&=\frac {x \arctan \left (x \right )}{y} \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.931 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.296 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.026 |
|
| \begin{align*}
m^{\prime }&=-\frac {k}{m^{2}} \\
m \left (0\right ) &= m_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
4.099 |
|
| \begin{align*}
y^{\prime } y-x&=2 y^{2} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.431 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.039 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.050 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.937 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| \begin{align*}
2 x^{2} y y^{\prime }+y^{2}&=2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| \begin{align*}
y^{\prime }-x y^{2}&=2 y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.523 |
|
| \begin{align*}
{\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.069 |
|
| \begin{align*}
\frac {y}{x -1}+\frac {x y^{\prime }}{1+y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.096 |
|
| \begin{align*}
\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.152 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{\sqrt {x}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.644 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.092 |
|
| \begin{align*}
2 y^{\prime } x&=\left (2 x^{2}-y^{2}\right ) y \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.632 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.289 |
|
| \begin{align*}
2 y^{\prime } x +\left (1+x^{2} y^{4}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.920 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 x}+\frac {x^{2}}{2 y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.265 |
|
| \begin{align*}
\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.580 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.272 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.208 |
|
| \begin{align*}
y^{\prime } y&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✗ | 1.407 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.207 |
|
| \begin{align*}
y^{\prime } y&={\mathrm e}^{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.606 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.534 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.726 |
|
| \begin{align*}
x y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.800 |
|
| \begin{align*}
y^{\prime } y&=x +1 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.916 |
|
| \begin{align*}
\frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| \begin{align*}
y^{2} y^{\prime }&=2+x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.967 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.164 |
|
| \begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.366 |
|
| \begin{align*}
y^{2} y^{\prime } x +y^{3}&=\cos \left (x \right ) x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
43.698 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| \begin{align*}
y^{\prime }+y x&=y^{4} x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.560 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
52.482 |
|
| \begin{align*}
x^{2} y^{\prime }-3 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.210 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.926 |
|
| \begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| \begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.273 |
|
| \begin{align*}
y^{2} y^{\prime }&=x \\
y \left (-1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.175 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 x^{4} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.208 |
|
| \begin{align*}
y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.805 |
|
| \begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
12.736 |
|
| \begin{align*}
y^{2}+\frac {2}{x}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| \begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.723 |
|
| \begin{align*}
y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
1.610 |
|
| \begin{align*}
v v^{\prime }&=\frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.907 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.042 |
|
| \begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
y^{\prime }-x y^{2}-3 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.506 |
|
| \begin{align*}
y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| \begin{align*}
y^{\prime }+2 a \,x^{3} y^{3}+2 y x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.556 |
|
| \begin{align*}
y^{\prime } x +x y^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.003 |
|
| \begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.647 |
|
| \begin{align*}
y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.761 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }+y \left (y-x \right )&=0 \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.879 |
|
| \begin{align*}
3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.688 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }-y \left (y-x \right )&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.845 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.782 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime }+\left (2+x \right ) y^{2}-4 y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.437 |
|
| \begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.766 |
|
| \begin{align*}
x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.263 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime }-y^{4}-y \sin \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.565 |
|
| \begin{align*}
y^{\prime } y+4 x \left (x +1\right )+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.335 |
|
| \begin{align*}
y^{\prime } y+a y^{2}-b \cos \left (x +c \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.226 |
|
| \begin{align*}
y^{\prime } y+x y^{2}-4 x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| \begin{align*}
2 y^{\prime } y-x y^{2}-x^{3}&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
a y y^{\prime }+b y^{2}+f \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.073 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.312 |
|
| \begin{align*}
x y^{\prime } y-y^{2}+a \,x^{3} \cos \left (x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.227 |
|
| \begin{align*}
2 x y^{\prime } y-y^{2}+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.382 |
|
| \begin{align*}
2 x y^{\prime } y-y^{2}+a \,x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.813 |
|
| \begin{align*}
2 x y^{\prime } y+2 y^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.580 |
|
| \begin{align*}
2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class D‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.326 |
|
| \begin{align*}
2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| \begin{align*}
2 x^{3}+y^{\prime } y+3 y^{2} x^{2}+7&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.243 |
|
| \begin{align*}
y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1&=0 \\
\end{align*} |
[_exact, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.111 |
|
| \begin{align*}
f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.744 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.039 |
|
| \begin{align*}
6 y^{2} y^{\prime } x +x +2 y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.233 |
|
| \begin{align*}
x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right )&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
25.954 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
14.088 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (1-x +y \ln \left (x \right ) x^{2}+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
12.299 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y \ln \left (x \right ) x^{2}+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
13.651 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.410 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
12.026 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
13.530 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
17.643 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
19.163 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
13.832 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
13.164 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
18.805 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✗ | 15.575 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
16.130 |
|
| \begin{align*}
g \left (x \right ) y^{\prime }&=f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.970 |
|
| \begin{align*}
\left (x +1\right ) y^{2}-x^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.016 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.737 |
|
| \begin{align*}
2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
79.425 |
|
| \begin{align*}
y^{3}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.399 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
3.345 |
|
| \begin{align*}
y^{\prime } y+x y^{2}&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.166 |
|
| \begin{align*}
4 y^{\prime } x +3 y+{\mathrm e}^{x} x^{4} y^{5}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.143 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.783 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
23.608 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.342 |
|
| \begin{align*}
y^{\prime } x +y+{\mathrm e}^{x} x^{4} y^{4}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.638 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-y x&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.890 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| \begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.167 |
|
| \begin{align*}
x^{\prime }&=-\frac {t}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.745 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
x^{\prime }&=x \left (1-\frac {x}{4}\right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.746 |
|
| \begin{align*}
x^{\prime }&=\sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.405 |
|
| \begin{align*}
y^{\prime }+y+\frac {1}{y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.817 |
|
| \begin{align*}
\left (t +1\right ) x^{\prime }+x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.314 |
|
| \begin{align*}
x^{\prime }&=2 t x^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.395 |
|
| \begin{align*}
x^{\prime }&=x \left (4+x\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
x^{\prime }&=\frac {4 t^{2}+3 x^{2}}{2 t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.330 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.387 |
|
| \begin{align*}
y^{\prime }&=-y^{2} {\mathrm e}^{-t^{2}} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.598 |
|
| \begin{align*}
x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
70.299 |
|
| \begin{align*}
x^{\prime }&=x \left (1+{\mathrm e}^{t} x\right ) \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.138 |
|
| \begin{align*}
x^{\prime }&=-\frac {x}{t}+\frac {1}{t x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.164 |
|
| \begin{align*}
x^{\prime }&=a x+b x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.280 |
|
| \begin{align*}
w^{\prime }&=t w+t^{3} w^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| \begin{align*}
x^{2}-t^{2} x^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.219 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.559 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.717 |
|
| \begin{align*}
4 x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.900 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.719 |
|
| \begin{align*}
\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.996 |
|
| \begin{align*}
\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| \begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
y \left (2\right ) &= 6 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.420 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {y^{2}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
y^{\prime } x +y&=-2 x^{6} y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.638 |
|
| \begin{align*}
x^{\prime }+\frac {\left (t +1\right ) x}{2 t}&=\frac {t +1}{t x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| \begin{align*}
y^{\prime }+\frac {y}{2 x}&=\frac {x}{y^{3}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.325 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.632 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.231 |
|
| \begin{align*}
8+2 y^{2}+\left (-x^{2}+1\right ) y y^{\prime }&=0 \\
y \left (3\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.431 |
|
| \begin{align*}
y^{2} {\mathrm e}^{2 x}-2 x +y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_exact, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.454 |
|
| \begin{align*}
4 x y^{\prime } y&=1+y^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.625 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=\frac {y^{3}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
71.405 |
|
| \begin{align*}
x^{\prime }&=x \left (2-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.356 |
|
| \begin{align*}
y^{\prime }&=y^{2} {\mathrm e}^{-t^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| \begin{align*}
x^{\prime }&=k x-x^{2} \\
x \left (0\right ) &= x_{0} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 7.151 |
|
| \begin{align*}
x^{\prime }&=-x \left (k^{2}+x^{2}\right ) \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✗ |
68.906 |
|
| \begin{align*}
V^{\prime }\left (x \right )+2 y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.831 |
|
| \begin{align*}
x^{\prime }&=k x-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
14.874 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x +1}+y^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.891 |
|
| \begin{align*}
y \left (x -y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.777 |
|
| \begin{align*}
x^{\prime }&=\frac {x}{t}+\frac {x^{2}}{t^{3}} \\
x \left (2\right ) &= 4 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}+x^{3} y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.659 |
|
| \begin{align*}
y \left (x -y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.567 |
|
| \begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.861 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.615 |
|
| \begin{align*}
y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.047 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.601 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.616 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.086 |
|
| \begin{align*}
3 y^{2} y^{\prime }-a y^{3}-x -1&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.796 |
|
| \begin{align*}
y^{\prime } x&=\left (y \ln \left (x \right )-2\right ) y \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.329 |
|
| \begin{align*}
y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.780 |
|
| \begin{align*}
\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.681 |
|
| \begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.541 |
|
| \begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.539 |
|
| \begin{align*}
y^{\prime } x -y^{2} \ln \left (x \right )+y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.513 |
|
| \begin{align*}
y^{\prime }+\frac {1}{2 y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.921 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.040 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.217 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.082 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{x}+y^{{1}/{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
13.977 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.723 |
|
| \begin{align*}
y^{\prime }&=y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.191 |
|
| \begin{align*}
2 y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
2 x y^{\prime } y+y^{2}&=-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
x -y^{\prime } y&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.090 |
|
| \begin{align*}
x y \left (1-y\right )-2 y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.638 |
|
| \begin{align*}
x \left (1-y^{3}\right )-3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.934 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
28.122 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.484 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.727 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.789 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.953 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.757 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.539 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.552 |
|
| \begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= {\frac {3}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
32.006 |
|
| \begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
62.865 |
|
| \begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
25.158 |
|
| \begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.718 |
|
| \begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= -1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✗ | 32.981 |
|
| \begin{align*}
y^{\prime }&=t^{2} y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.385 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2}+3 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.200 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.184 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y+t^{2} y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| \begin{align*}
y^{\prime }&=t y^{{1}/{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.369 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.010 |
|
| \begin{align*}
y^{\prime }&=t^{2} y^{3} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
17.766 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y-t^{2} y} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.332 |
|
| \begin{align*}
y^{\prime }&=t y^{2}+2 y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.634 |
|
| \begin{align*}
x^{\prime }&=\frac {t^{2}}{x+t^{3} x} \\
x \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.706 |
|
| \begin{align*}
y^{\prime }&=\frac {1-y^{2}}{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.053 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.955 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+5}{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.947 |
|
| \begin{align*}
y^{\prime }&=4 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| \begin{align*}
y^{\prime }&=2 y \left (1-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
y^{\prime }&=3 y \left (1-y\right ) \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.239 |
|
| \begin{align*}
y^{\prime }&=y^{2}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.666 |
|
| \begin{align*}
y^{\prime }&=t y+t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.054 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.245 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.422 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
29.214 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.532 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.618 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.418 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.503 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.434 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.959 |
|
| \begin{align*}
y^{\prime }&=2 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.634 |
|
| \begin{align*}
y^{\prime }&=t^{2} y^{3}+y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.648 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2}+3 t^{2} y^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.309 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{y+t^{3} y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.920 |
|
| \begin{align*}
y^{\prime } y&=2 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.454 |
|
| \begin{align*}
y^{3}-25 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.303 |
|
| \begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.398 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.369 |
|
| \begin{align*}
x y^{\prime } y&=y^{2}+9 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.635 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.577 |
|
| \begin{align*}
y^{\prime } y&=x y^{2}+x \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.660 |
|
| \begin{align*}
y^{\prime } y&=x y^{2}-9 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.329 |
|
| \begin{align*}
y^{\prime }&=200 y-2 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
y^{\prime }&=3 y^{2}-\sin \left (x \right ) y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.026 |
|
| \begin{align*}
y^{\prime }&=3 x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.744 |
|
| \begin{align*}
y^{\prime }&=200 y-2 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime } y&=\sin \left (x \right ) \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.493 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.201 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
3.202 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-1}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.319 |
|
| \begin{align*}
y^{\prime }+4 y&=y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
x^{2} y^{\prime }-y x&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.497 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.193 |
|
| \begin{align*}
y^{\prime }+3 y&=3 y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.894 |
|
| \begin{align*}
y^{\prime }+3 \cot \left (x \right ) y&=6 \cos \left (x \right ) y^{{2}/{3}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.906 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=\frac {1}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} | [[_homogeneous, ‘class D‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.756 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\frac {x^{2}}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.750 |
|
| \begin{align*}
3 y^{\prime }+\frac {2 y}{x}&=4 \sqrt {y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.272 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{2} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.631 |
|
| \begin{align*}
y^{\prime }+3 y&=\frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.111 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y}-\frac {y}{2 x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.503 |
|
| \begin{align*}
2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.777 |
|
| \begin{align*}
2-2 x +3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| \begin{align*}
1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
1+y^{4}+x y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| \begin{align*}
y^{\prime } x&=2 y^{2}-6 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.467 |
|
| \begin{align*}
4 y^{2}-y^{2} x^{2}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
x y^{2}-6+x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| \begin{align*}
x^{3}+y^{3}+y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.957 |
|
| \begin{align*}
1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.993 |
|
| \begin{align*}
3 x y^{3}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y}{x +1}-y^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.465 |
|
| \begin{align*}
x y^{\prime } y&=2 y^{2}+2 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.694 |
|
| \begin{align*}
x y^{3} y^{\prime }&=y^{4}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.956 |
|
| \begin{align*}
y^{\prime }&=4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.638 |
|
| \begin{align*}
y^{\prime } y-x y^{2}&=6 x \,{\mathrm e}^{4 x^{2}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.828 |
|
| \begin{align*}
y^{2}-y^{2} \cos \left (x \right )+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.795 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.967 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.114 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.571 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{5}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.991 |
|
| \begin{align*}
\frac {y^{\prime }}{t}&=\sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.939 |
|
| \begin{align*}
y^{\prime }&=6 y^{{2}/{3}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.538 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.530 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.286 |
|
| \begin{align*}
y^{\prime }&=-\frac {t}{y} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.007 |
|
| \begin{align*}
y^{\prime }&=-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
31.080 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.744 |
|
| \begin{align*}
\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.059 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.461 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.717 |
|
| \begin{align*}
y^{\prime }&=\frac {5^{-t}}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.319 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.914 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {t}}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.215 |
|
| \begin{align*}
y^{\prime }&=y^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.060 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.303 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
y^{\prime }&=16 y-8 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.021 |
|
| \begin{align*}
\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.652 |
|
| \begin{align*}
-1+3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
3 t^{2}+3 y^{2}+6 t y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.849 |
|
| \begin{align*}
2 t y+y^{2}-t^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| \begin{align*}
5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.579 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=\frac {t}{y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| \begin{align*}
y+y^{\prime }&=t y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.236 |
|
| \begin{align*}
2 t y^{\prime }-y&=2 t y^{3} \cos \left (t \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.071 |
|
| \begin{align*}
-y+t y^{\prime }&=t y^{3} \sin \left (t \right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
29.561 |
|
| \begin{align*}
-2 y+y^{\prime }&=\frac {\cos \left (t \right )}{\sqrt {y}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.306 |
|
| \begin{align*}
3 y+y^{\prime }&=\sqrt {y}\, \sin \left (t \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.145 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=t y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.165 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.425 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.254 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=t^{2} y^{{3}/{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
80.625 |
|
| \begin{align*}
\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| \begin{align*}
\sqrt {t^{2}+1}+y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
t^{3}+y^{3}-t y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.036 |
|
| \begin{align*}
y^{\prime }+2 y&=t^{2} \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
2.108 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y^{2}-t^{2}}{2 t y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| \begin{align*}
y^{3}-t^{3}-t y^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.552 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-t^{2}}{t y} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.239 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t^{5}}{5 y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.492 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{5 t}}{y^{4}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.085 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}+t^{2}}{r t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.421 |
|
| \begin{align*}
-y+y^{\prime }&=t y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.954 |
|
| \begin{align*}
y+y^{\prime }&=\frac {{\mathrm e}^{t}}{y^{2}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.254 |
|
| \begin{align*}
y-t y^{\prime }&=2 y^{2} \ln \left (t \right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.669 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y^{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.886 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.083 |
|
| \begin{align*}
y^{\prime }&=y+3 y^{{1}/{3}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.167 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.978 |
|
| \begin{align*}
4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| \begin{align*}
y^{\prime }+2 y x&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.627 |
|
| \begin{align*}
3 y^{2} y^{\prime } x -2 y^{3}&=x^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.913 |
|
| \begin{align*}
2 \ln \left (x \right ) y^{\prime }+\frac {y}{x}&=\frac {\cos \left (x \right )}{y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.340 |
|
| \begin{align*}
2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right )^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.736 |
|
| \begin{align*}
y^{\prime }-y \cos \left (x \right )&=y^{2} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.424 |
|
| \begin{align*}
x +y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.772 |
|
| \begin{align*}
x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.089 |
|
| \begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.521 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.856 |
|
| \begin{align*}
y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.821 |
|
| \begin{align*}
x y^{\prime } y-y^{2}&=x^{4} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.076 |
|
| \begin{align*}
y^{2} y^{\prime } x -y^{3}&=\frac {x^{4}}{3} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
x^{2}+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.780 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.945 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.214 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.487 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} \left (x^{3}+1\right )}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.706 |
|
| \begin{align*}
y^{\prime }+y^{3} \sin \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| \begin{align*}
y^{\prime } y&=\left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| \begin{align*}
y^{\prime }&=x \left (y-y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.920 |
|
| \begin{align*}
y^{\prime }&=\left (1-12 x \right ) y^{2} \\
y \left (0\right ) &= -{\frac {1}{8}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.728 |
|
| \begin{align*}
y^{\prime }&=\frac {3-2 x}{y} \\
y \left (1\right ) &= -6 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| \begin{align*}
x +y y^{\prime } {\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.305 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}}{\theta } \\
r \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x}{y+x^{2} y} \\
y \left (0\right ) &= -7 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.984 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2}+4 x^{3} y^{2} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.707 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (x^{2}+1\right ) y^{5}}{6} \\
y \left (0\right ) &= -2^{{1}/{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.843 |
|
| \begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-4}} \\
y \left (3\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.024 |
|
| \begin{align*}
\sqrt {-x^{2}+1}\, y^{2} y^{\prime }&=\arcsin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.484 |
|
| \begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.441 |
|
| \begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✗ |
4.058 |
|
| \begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{t +1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.056 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.882 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 t}{y} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
5.091 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.147 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.133 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
1.833 |
|
| \begin{align*}
y^{\prime }&=t \left (3-y\right ) y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.909 |
|
| \begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.887 |
|
| \begin{align*}
y^{\prime }&=-y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.012 |
|
| \begin{align*}
y^{\prime } y&=x +1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.920 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime }&=y \left (1+y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.491 |
|
| \begin{align*}
x y^{\prime } y&=y^{2}+x^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.253 |
|
| \begin{align*}
t y^{\prime }+y&=t^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.043 |
|
| \begin{align*}
y^{\prime }&=y \left (t y^{3}-1\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.812 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{t}&=t^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y-y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.944 |
|
| \begin{align*}
3 t y^{\prime }+9 y&=2 t y^{{5}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
31.275 |
|
| \begin{align*}
y^{\prime }&=y+\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
y^{\prime }&=r y-k^{2} y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.225 |
|
| \begin{align*}
y^{\prime }&=a y+b y^{3} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 5.234 |
|
| \begin{align*}
y^{\prime }-4 y^{2} {\mathrm e}^{x}&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| \begin{align*}
y^{\prime }&=\frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
34.780 |
|
| \begin{align*}
2 x y^{\prime } y+\ln \left (x \right )&=-1-y^{2} \\
\end{align*} |
[_exact, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.303 |
|
| \begin{align*}
4 x y^{\prime } y&=8 x^{2}+5 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.772 |
|
| \begin{align*}
y^{\prime }+y-y^{{1}/{4}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.415 |
|
| \begin{align*}
y^{\prime } x -4 y&=\sqrt {y}\, x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.833 |
|
| \begin{align*}
y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y}&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.022 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y-x y^{2} \ln \left (x \right )+y^{\prime } x&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.828 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| \begin{align*}
y^{\prime } y&={\mathrm e}^{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.472 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
24.105 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.608 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
63.872 |
|
| \begin{align*}
x^{2} y^{\prime }-3 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
20.773 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.634 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.873 |
|
| \begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 6.762 |
|
| \begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.136 |
|
| \begin{align*}
1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_exact, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.195 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
21.329 |
|
| \begin{align*}
x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.409 |
|
| \begin{align*}
x^{3}+x y^{3}+3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.609 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.751 |
|
| \begin{align*}
2 x y^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.345 |
|
| \begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.648 |
|
| \begin{align*}
y^{2} y^{\prime } x +y^{3}&=\cos \left (x \right ) x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
47.005 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.930 |
|
| \begin{align*}
y^{\prime } x +y&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.693 |
|
| \begin{align*}
x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.228 |
|
| \begin{align*}
x y^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.351 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.760 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.356 |
|
| \begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
21.044 |
|
| \begin{align*}
x^{\prime }+2 t x+t x^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.359 |
|
| \begin{align*}
2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
110.378 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {\sin \left (x \right )}{y^{3}} \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 76.287 |
|
| \begin{align*}
\left (T \ln \left (t \right )-1\right ) T&=t T^{\prime } \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.816 |
|
| \begin{align*}
y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.558 |
|
| \begin{align*}
1+v^{2}+\left (u^{2}+1\right ) v v^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.169 |
|
| \begin{align*}
y^{\prime }+y \sin \left (x \right )&=\sin \left (x \right ) y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.092 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }-y x&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
21.419 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.784 |
|
| \begin{align*}
3 y^{2} y^{\prime }+y^{3}&=x -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.502 |
|
| \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.105 |
|
| \begin{align*}
5 x y^{\prime } y-y^{2}-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
34.142 |
|
| \begin{align*}
y-y^{\prime } x&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.187 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
32.809 |
|
| \begin{align*}
{\mathrm e}^{x} x^{4}-2 m x y^{2}+2 m \,x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.944 |
|
| \begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
31.138 |
|
| \begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.340 |
|
| \begin{align*}
x^{2}+y^{2}-x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.983 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{6} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.209 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=3 x^{2} y^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
36.508 |
|
| \begin{align*}
y^{\prime }+\frac {x y}{-x^{2}+1}&=x \sqrt {y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
28.033 |
|
| \begin{align*}
3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3}&=a \,x^{3} \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 11.274 |
|
| \begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.072 |
|
| \begin{align*}
y^{\prime } x +\frac {y^{2}}{x}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.318 |
|
| \begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.928 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.674 |
|
| \begin{align*}
y^{\prime }&=x^{3} y^{3}-y x \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.005 |
|
| \begin{align*}
y^{\prime } y&=a x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.668 |
|
| \begin{align*}
y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.116 |
|
| \begin{align*}
x y \left (y-y^{\prime } x \right )&=y^{\prime } y+x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.646 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.949 |
|
| \begin{align*}
\left (y x +1\right ) y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+y^{2}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.468 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.821 |
|
| \begin{align*}
x y^{2}+x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.870 |
|
| \begin{align*}
y-y^{\prime } x&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.572 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.592 |
|
| \begin{align*}
x^{2} y^{\prime }+y \left (x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.819 |
|
| \begin{align*}
2 y^{\prime }&=\frac {y}{x}+\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.087 |
|
| \begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.397 |
|
| \begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} | [_Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.198 |
|
| \begin{align*}
2 y^{\prime }-y \sec \left (x \right )&=y^{3} \tan \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.713 |
|
| \begin{align*}
y^{\prime }+y \cos \left (x \right )&=y^{n} \sin \left (2 x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.039 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.537 |
|
| \begin{align*}
y^{\prime }&=\frac {1+x^{2}+y^{2}}{2 x y} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.495 |
|
| \begin{align*}
y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| \begin{align*}
y^{2} x^{2}-3 x y^{\prime } y&=2 y^{2}+x^{3} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
3.216 |
|
| \begin{align*}
y-y^{\prime } x&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.696 |
|
| \begin{align*}
1+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.233 |
|
| \begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.764 |
|
| \begin{align*}
x y \left (y-y^{\prime } x \right )&=y^{\prime } y+x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.373 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x}}{2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.700 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (t^{2}+1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.276 |
|
| \begin{align*}
y^{\prime } x&=y \left (1-2 y\right ) \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.683 |
|
| \begin{align*}
x +y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.126 |
|
| \begin{align*}
y^{\prime }+2 y x&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.310 |
|
| \begin{align*}
y^{\prime }+2 y x&=y^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.215 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.954 |
|
| \begin{align*}
y^{\prime }&=k y-c y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 12.358 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.404 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.858 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.091 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.696 |
|
| \begin{align*}
y^{\prime }&=y-\mu y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.851 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.037 |
|
| \begin{align*}
\left (y x +1\right ) y&=y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.368 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x^{{1}/{3}}}{2} \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
7.672 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| \begin{align*}
x^{\prime }&=x^{{1}/{4}} \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
6.364 |
|
| \begin{align*}
x^{\prime }&=x^{p} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.538 |
|
| \begin{align*}
x^{\prime }&=x^{3}-x \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
56.438 |
|
| \begin{align*}
x^{\prime }&=x^{2}+x \\
x \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| \begin{align*}
x^{\prime }&=4 t^{3} x^{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.076 |
|
| \begin{align*}
x^{\prime }&=-t x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
19.829 |
|
| \begin{align*}
x^{\prime }&=\frac {t}{x} \\
x \left (\sqrt {2}\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.734 |
|
| \begin{align*}
x^{\prime }&=-\frac {t}{4 x^{3}} \\
x \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.061 |
|
| \begin{align*}
x^{\prime }&=-t^{2} x^{2} \\
x \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.409 |
|
| \begin{align*}
x^{\prime }&=5 t \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✗ | 41.820 |
|
| \begin{align*}
x^{\prime }&=4 t^{3} \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
30.706 |
|
| \begin{align*}
x^{\prime }&=2 t \sqrt {x} \\
x \left (a \right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.037 |
|
| \begin{align*}
x^{\prime }&=-\left (1+p \right ) t^{p} x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.174 |
|
| \begin{align*}
x -2 y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.944 |
|
| \begin{align*}
x +y^{2}+B \left (x \right ) y y^{\prime }&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.038 |
|
| \begin{align*}
x +y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.540 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.831 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x^{2}-2 t^{2}}{t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.858 |
|
| \begin{align*}
x^{\prime }&=\frac {t^{2}+x^{2}}{2 t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
27.693 |
|
| \begin{align*}
x^{\prime }-x&=t x^{2} \\
x \left (0\right ) &= a \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.371 |
|
| \begin{align*}
x^{\prime }+2 t x&=-4 t x^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.078 |
|
| \begin{align*}
x^{\prime }-t x&=x^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.290 |
|
| \begin{align*}
x^{\prime }&=\lambda x-x^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.428 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.799 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.417 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (0\right ) &= a_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
14.425 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.668 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x^{2}+1}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
5.988 |
|
| \begin{align*}
x y^{2}-x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 11.713 |
|
| \begin{align*}
y^{\prime }&=x^{2} y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.528 |
|
| \begin{align*}
{\mathrm e}^{x}-y^{\prime } y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.518 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
57.768 |
|
| \begin{align*}
y^{2}-x^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.306 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
16.738 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
21.921 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.102 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.193 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
79.643 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
17.227 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
10.610 |
|
| \begin{align*}
y-x y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.313 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.585 |
|
| \begin{align*}
\frac {y^{2}-y x}{x y^{2}}+\frac {x y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.250 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2} x^{2}+2 y}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
22.705 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
82.292 |
|
| \begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.292 |
|
| \begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.800 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 8.828 |
|
| \begin{align*}
y^{\prime }&=\alpha \left (A -y\right ) y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
15.107 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.436 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{4 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.153 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.850 |
|
| \begin{align*}
3 x^{2}-2 y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.879 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.701 |
|
| \begin{align*}
x^{3}-y^{3}+y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
45.417 |
|
| \begin{align*}
x y \left (y^{\prime } x +y\right )&=4 x^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
71.394 |
|
| \begin{align*}
y^{\prime } y+\tan \left (x \right ) y^{2}&=\cos \left (x \right )^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
88.531 |
|
| \begin{align*}
-y+y^{\prime } x&=y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.202 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} x^{3} \sin \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
45.030 |
|
| \begin{align*}
x y^{2}&=y-y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
28.459 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.785 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.662 |
|
| \begin{align*}
\sin \left (x \right )+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.869 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.782 |
|
| \begin{align*}
x -y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.880 |
|
| \begin{align*}
y^{\prime }&=x^{3} y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.403 |
|
| \begin{align*}
{\mathrm e}^{x}-y^{\prime } y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.342 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| \begin{align*}
\sin \left (x \right )+y^{\prime } y&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| \begin{align*}
y^{\prime }&=\frac {x \,{\mathrm e}^{x}}{2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.701 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.367 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.600 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 x}{y x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.699 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
y^{\prime }&=\frac {-y+x y^{2}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.729 |
|
| \begin{align*}
y+x^{3} y^{3}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
y+x^{4} y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.542 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.315 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{4} y^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.656 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime }+y x&=6 x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=-x^{9} y^{5} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.238 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.089 |
|
| \begin{align*}
y^{\prime }&=y^{p} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.807 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.315 |
|
| \begin{align*}
3 x \left (1+y^{2}\right )+y \left (x^{2}+2\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.500 |
|
| \begin{align*}
y^{\prime }&=\frac {x y^{2}+x}{4 y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.087 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x +x y^{2}}{x^{2} y+2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.266 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y^{2}-x^{4}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.044 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\frac {y^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.204 |
|
| \begin{align*}
x^{2}-y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.524 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.647 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{2 y}+\frac {y}{2 x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.223 |
|
| \begin{align*}
2+3 x y^{2}-4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.440 |
|
| \begin{align*}
3 x +4 y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.484 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.328 |
|
| \begin{align*}
y^{2}+2 x^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.179 |
|
| \begin{align*}
3 x +2 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.135 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2} \cot \left (x \right )+\cos \left (x \right ) \sin \left (x \right )}{2 y} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
34.138 |
|
| \begin{align*}
y^{\prime }-y&=x y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.979 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
\left (x^{2}+1\right ) \left (y^{3}-1\right )&=x^{2} y^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.227 |
|
| \begin{align*}
s^{2} t s^{\prime }+t^{2}+4&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.657 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.006 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x -y^{4}}{3 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| \begin{align*}
x^{2}+y^{2}+2 y^{\prime } y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.142 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.146 |
|
| \begin{align*}
3 x y^{2}+2+2 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.231 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.700 |
|
| \begin{align*}
y^{\prime }&=y \left (x +y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✗ |
✓ |
1.112 |
|
| \begin{align*}
y^{2}+x y^{\prime } y&=\sin \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.950 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y^{2}}{2 y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.535 |
|
| \begin{align*}
y^{\prime } y&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
y^{\prime } x&=\left (x +1\right ) y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.040 |
|
| \begin{align*}
x y \left (x^{2}+1\right ) y^{\prime }-y^{2}&=1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.275 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.682 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.664 |
|
| \begin{align*}
r r^{\prime }&=a \\
r \left (0\right ) &= b \\
\end{align*} | [_quadrature] | ✓ | ✗ | ✓ | ✓ | 2.156 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.828 |
|
| \begin{align*}
y^{\prime } y-y^{2}&=x^{2} \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.419 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.281 |
|
| \begin{align*}
y^{\prime }&=-\frac {y^{2}+x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.189 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
x^{\prime }&=\frac {a x^{{5}/{6}}}{\left (-B t +b \right )^{{3}/{2}}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
31.041 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.216 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
p^{\prime }&=a p-b p^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.862 |
|
| \begin{align*}
y^{\prime } x -\frac {y}{\ln \left (x \right )}&=x y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.138 |
|
| \begin{align*}
\left (1+y^{2}\right ) \cos \left (x \right )&=2 \left (1+\sin \left (x \right )^{2}\right ) y y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.767 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.343 |
|
| \begin{align*}
y^{\prime }+\frac {y}{\sin \left (x \right )}-y^{2}&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {1}{2 y} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=-2 x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.550 |
|
| \begin{align*}
y^{\prime }-2 y x&=4 x \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.321 |
|
| \begin{align*}
y^{\prime } x -\frac {y}{2 \ln \left (x \right )}&=y^{2} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.119 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.667 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.112 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.485 |
|
| \begin{align*}
x^{4}+y^{4}-x y^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.387 |
|
| \begin{align*}
x^{2}-y^{2}+x +2 x y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.651 |
|
| \begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.607 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.462 |
|
| \begin{align*}
y^{\prime } y&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.068 |
|
| \begin{align*}
\left (x^{2}+1\right ) y y^{\prime }+4&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.569 |
|
| \begin{align*}
y^{3}+y^{\prime } \sqrt {-x^{2}+1}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.404 |
|
| \begin{align*}
\left (x^{3}+1\right ) y^{\prime }+x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.526 |
|
| \begin{align*}
y^{2} \sec \left (x \right )^{2} y^{\prime }+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.159 |
|
| \begin{align*}
x y^{\prime } y+x^{6}-2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+y^{3}}{y^{2} x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.386 |
|
| \begin{align*}
y^{3}+2 x y^{3}+1+3 y^{2} y^{\prime } x&=0 \\
\end{align*} | [_rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 1.946 |
|
| \begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.678 |
|
| \begin{align*}
y^{\prime }-4 y&=x y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.319 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=\frac {x^{2}}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.353 |
|
| \begin{align*}
y^{5} y^{\prime }+5 y^{6}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y^{\prime }+y x&=x y^{5} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.291 |
|
| \begin{align*}
y^{5} x^{2}+{\mathrm e}^{x^{3}} y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.794 |
|
| \begin{align*}
x y^{\prime } y+2 x +\frac {y^{2}}{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.915 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.749 |
|
| \begin{align*}
3 y^{2}-2 x^{2}&=2 x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
75.100 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.156 |
|
| \begin{align*}
x y^{3}+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.872 |
|
| \begin{align*}
y^{\prime }&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.047 |
|
| \begin{align*}
x^{2}+y \left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| \begin{align*}
x y^{\prime } y-y^{2}&=1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.194 |
|
| \begin{align*}
v v^{\prime }&=g \\
v \left (x_{0} \right ) &= v_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
2 y^{2}+4 x^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
19.068 |
|
| \begin{align*}
x^{2}+2 y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.056 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.125 |
|
| \begin{align*}
v \left (3 x +2 v\right )-x^{2} v^{\prime }&=0 \\
v \left (1\right ) &= 2 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 8.479 |
|
| \begin{align*}
1+y^{2}+\left (y+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.587 |
|
| \begin{align*}
1+y^{2}+x y^{2}+\left (x^{2} y+y+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.898 |
|
| \begin{align*}
y \left (2 y x +1\right )-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.251 |
|
| \begin{align*}
x^{3} y^{3}+1+x^{4} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| \begin{align*}
s \left (2+s^{2} t \right )+2 t s^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.274 |
|
| \begin{align*}
y \left (2-3 y x \right )-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.410 |
|
| \begin{align*}
y \left (3 x^{3}-x +y\right )+x^{2} \left (-x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.113 |
|
| \begin{align*}
2 x^{5} y^{\prime }&=y \left (3 x^{4}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.217 |
|
| \begin{align*}
x^{2}+1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.569 |
|
| \begin{align*}
y^{\prime } x&=y^{2} x^{2}+2 y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| \begin{align*}
y \left (x +3 y\right )+x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.354 |
|
| \begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.119 |
|
| \begin{align*}
y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
55.501 |
|
| \begin{align*}
y^{\prime }&=y-x y^{3} {\mathrm e}^{-2 x} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.534 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
38.617 |
|
| \begin{align*}
y^{\prime } x&=y-y^{3} \cos \left (x \right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.243 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{k} y^{n} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
19.288 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}-2 x^{3} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.225 |
|
| \begin{align*}
y^{4}-2 y x +3 x^{2} y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.057 |
|
| \begin{align*}
2 y^{3}-x^{3}+3 y^{2} y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
16.356 |
|
| \begin{align*}
x^{2}+6 y^{2}-4 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.557 |
|
| \begin{align*}
y^{\prime } x&=x^{3} y^{3}-2 y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.624 |
|
| \begin{align*}
4 y+3 \left (2 x -1\right ) \left (y^{\prime }+y^{4}\right )&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.425 |
|
| \begin{align*}
y^{\prime }&=2 y \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
2 y y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime }&=y \left (t +y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.135 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.211 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime }&=y \left (t +y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.070 |
|
| \begin{align*}
y^{\prime }&=2 y \left (5-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
\frac {y^{\prime }}{y}&=y-t \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.051 |
|
| \begin{align*}
{\mathrm e}^{t} y^{\prime }&=y^{3}-y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.723 |
|
| \begin{align*}
y y^{\prime }&=t \\
y \left (2\right ) &= -1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.358 |
|
| \begin{align*}
1-y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.992 |
|
| \begin{align*}
y^{3} y^{\prime }&=t \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| \begin{align*}
y^{4} y^{\prime }&=t +2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.559 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
y^{\prime }&=t^{m} y^{n} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| \begin{align*}
y^{\prime }&=4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
t y y^{\prime }+t^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.418 |
|
| \begin{align*}
2 y y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.285 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-t^{2}}{2 t y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
60.106 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+y^{2}}{t y} \\
y \left ({\mathrm e}\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| \begin{align*}
-y+y^{\prime }&=t y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.018 |
|
| \begin{align*}
y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.075 |
|
| \begin{align*}
t y+y^{\prime }&=t y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.640 |
|
| \begin{align*}
t y+y^{\prime }&=t^{3} y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.315 |
|
| \begin{align*}
\left (-t^{2}+1\right ) y^{\prime }-t y&=5 t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| \begin{align*}
\frac {y}{t}+y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.956 |
|
| \begin{align*}
y y^{\prime }+t y^{2}&=t \\
y \left (0\right ) &= -2 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.911 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| \begin{align*}
y+y^{\prime }&=t y^{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.472 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.687 |
|
| \begin{align*}
y^{2}+2 t y y^{\prime }+3 t^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.512 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.410 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.008 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.088 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| \begin{align*}
y^{\prime }&=a y-y^{2} b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.797 |
|
| \begin{align*}
y^{\prime }&=y^{2}+y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| \begin{align*}
y^{\prime }&=a y-b y^{n} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.931 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
y^{\prime }&=a y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.449 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.879 |
|
| \begin{align*}
y^{\prime }&=t^{m} y^{n} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✗ |
113.811 |
|
| \begin{align*}
y^{\prime }&=a \left (t \right ) y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.929 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{t^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| \begin{align*}
y^{\prime }&=t y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.298 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.488 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.517 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.147 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.822 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.811 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.648 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.874 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.170 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.149 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.790 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
12.730 |
|
| \begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.709 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.671 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.721 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.225 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.486 |
|
| \begin{align*}
\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.296 |
|