| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.834 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime }&=\ln \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
1+y^{\prime }&=2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.091 |
|
| \begin{align*}
y^{\prime }&=y \sqrt {y^{2}-1} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
40.859 |
|
| \begin{align*}
y^{\prime }+y&=2 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| \begin{align*}
x^{\prime }&=x-x^{2} \\
x \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.887 |
|
| \begin{align*}
x^{\prime }&=10 x-x^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.713 |
|
| \begin{align*}
x^{\prime }&=1-x^{2} \\
x \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.415 |
|
| \begin{align*}
x^{\prime }&=9-4 x^{2} \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.859 |
|
| \begin{align*}
x^{\prime }&=3 x \left (5-x\right ) \\
x \left (0\right ) &= 8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
x^{\prime }&=3 x \left (5-x\right ) \\
x \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
x^{\prime }&=4 x \left (7-x\right ) \\
x \left (0\right ) &= 11 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.749 |
|
| \begin{align*}
x^{\prime }&=7 x \left (x-13\right ) \\
x \left (0\right ) &= 17 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| \begin{align*}
y^{\prime }+y^{2}&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.984 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.717 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.533 |
|
| \begin{align*}
y^{\prime }&=\ln \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.149 |
|
| \begin{align*}
1+y^{\prime }&=2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
y^{\prime }+y&=2 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| \begin{align*}
y^{\prime }&=y+y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.789 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| \begin{align*}
y^{\prime }&=\frac {a y+b}{d +c y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.305 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.346 |
|
| \begin{align*}
y^{\prime }&=a y+b y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.954 |
|
| \begin{align*}
y^{\prime }&=y \left (y-2\right ) \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.904 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 \arctan \left (y\right )}{1+y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.328 |
|
| \begin{align*}
y^{\prime }&=-k \left (y-1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (y^{2}-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| \begin{align*}
y^{\prime }&=-b \sqrt {y}+a y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.533 |
|
| \begin{align*}
y^{\prime }&=\left (1-y\right )^{2} y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime }&=a y^{\frac {a -1}{a}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
y^{\prime }&={| y|}+1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime }+a y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime }+3 y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right )&=-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime }&=2 y-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.910 |
|
| \begin{align*}
y^{\prime }&=a y-b y^{2} \\
y \left (0\right ) &= \operatorname {y0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.671 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{5}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.964 |
|
| \begin{align*}
y^{\prime }-2 y&=2 \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| \begin{align*}
y^{\prime }+y^{2}+k^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.237 |
|
| \begin{align*}
y^{\prime }+y^{2}-3 y+2&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| \begin{align*}
y^{\prime }+y^{2}+5 y-6&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.623 |
|
| \begin{align*}
y^{\prime }+y^{2}+8 y+7&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime }+y^{2}+14 y+50&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
6 y^{\prime }+6 y^{2}-y-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
36 y^{\prime }+36 y^{2}-12 y+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=k \left (a -y\right ) \left (b -y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 10.465 |
|
| \begin{align*}
y^{\prime }&=k \left (a -y\right ) \left (b -y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.991 |
|
| \begin{align*}
x^{\prime }&=x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
x^{\prime }&=-x \left (1-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.743 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.730 |
|
| \begin{align*}
{\mathrm e}^{y} \left (1+y^{\prime }\right )&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.378 |
|
| \begin{align*}
y^{\prime }-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.892 |
|
| \begin{align*}
y^{\prime }&=2 y-4 \\
y \left (0\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| \begin{align*}
y^{\prime }&=-y^{3} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
30.428 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| \begin{align*}
y^{\prime }&=y-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime }&=1-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.697 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.481 |
|
| \begin{align*}
y^{\prime }&=-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.826 |
|
| \begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
y^{\prime }&=2 y \\
y \left (\ln \left (3\right )\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.386 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.950 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \sqrt {y-1}}{3} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
m v^{\prime }&=m g -k v^{2} \\
v \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.316 |
|
| \begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&=3 \cos \left (y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{2} y^{\prime }&=2+3 y^{6} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.071 |
|
| \begin{align*}
y^{\prime }&=a +b y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.490 |
|
| \begin{align*}
y^{\prime }&=a_{0} +a_{1} y+a_{2} y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.138 |
|
| \begin{align*}
y^{\prime }&=y \left (a +b y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.595 |
|
| \begin{align*}
y^{\prime }&=a_{0} +a_{1} y+a_{2} y^{2}+a_{3} y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.028 |
|
| \begin{align*}
y^{\prime }&=\sqrt {{| y|}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.752 |
|
| \begin{align*}
y^{\prime }&=a +b y+\sqrt {A +B y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
62.179 |
|
| \begin{align*}
y^{\prime }&=a +b y-\sqrt {A +B y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
59.905 |
|
| \begin{align*}
y^{\prime }&=\sqrt {a +b y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.650 |
|
| \begin{align*}
y^{\prime }&=y \sqrt {a +b y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
29.816 |
|
| \begin{align*}
y^{\prime }&=a +b \cos \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
18.107 |
|
| \begin{align*}
y^{\prime }&=a +b \sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
15.710 |
|
| \begin{align*}
y^{\prime }&=\sqrt {a +b \cos \left (y\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.635 |
|
| \begin{align*}
y^{\prime }&=a f \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y^{\prime } y&=a_{0} +a_{1} y+a_{2} y^{2} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.448 |
|
| \begin{align*}
y^{\prime } y&=\sqrt {y^{2}+a^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| \begin{align*}
y^{\prime } y&=\sqrt {y^{2}-a^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| \begin{align*}
x \left (y+2\right ) y^{\prime }+a x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
108.305 |
|
| \begin{align*}
{y^{\prime }}^{2}&=a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (y-1\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.296 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| \begin{align*}
\left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
2.308 |
|
| \begin{align*}
2 {y^{\prime }}^{4}-y^{\prime } y-2&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
3 {y^{\prime }}^{5}-y^{\prime } y+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.329 |
|
| \begin{align*}
y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right )&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
15.167 |
|
| \begin{align*}
{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
20.936 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=R^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.711 |
|
| \begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime }+b^{2} y^{2}&=a^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.164 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime }&=y \\
y \left (1\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.994 |
|
| \begin{align*}
2 y^{\prime }&=3 \left (y-2\right )^{{1}/{3}} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.884 |
|
| \begin{align*}
y^{\prime }&=4 y^{2}-3 y+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
x^{\prime }-x^{3}&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.036 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.134 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y+2 \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.043 |
|
| \begin{align*}
u^{\prime }&=\alpha \left (1-u\right )-\beta u \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
2 y+y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
y^{\prime }&=2 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.147 |
|
| \begin{align*}
3 y^{\prime }-7 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.868 |
|
| \begin{align*}
5 y^{\prime }+4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.717 |
|
| \begin{align*}
3 z^{\prime }+11 z&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.759 |
|
| \begin{align*}
6 w^{\prime }-13 w&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
\left (3 y-1\right )^{2} {y^{\prime }}^{2}&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.417 |
|
| \begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.856 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.428 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
5 y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
\left (y-1\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime } y+\sqrt {16-y^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.745 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.331 |
|
| \begin{align*}
y^{\prime }&=5-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime }&=4+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.974 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.942 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.025 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
6.160 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (2\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.555 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.224 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
4.638 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.616 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.484 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (3\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.881 |
|
| \begin{align*}
y^{\prime }&=2 y-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
1+{y^{\prime }}^{2}&=\frac {1}{y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.493 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.172 |
|
| \begin{align*}
y^{\prime }&=\left (y-2\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime }&=10+3 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| \begin{align*}
y^{\prime }&=y \left (2-y\right ) \left (4-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime }&=y \ln \left (y+2\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.167 |
|
| \begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.313 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{\pi }-\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.941 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y-6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
m v^{\prime }&=m g -k v^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.556 |
|
| \begin{align*}
y^{\prime }-\left (y-1\right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
s^{\prime }&=k s \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
q^{\prime }&=k \left (q-70\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
p^{\prime }&=p-p^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
x^{\prime }&=4+4 x^{2} \\
x \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
24.852 |
|
| \begin{align*}
y^{\prime }+2 y&=1 \\
y \left (0\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| \begin{align*}
y^{\prime }&=-y \ln \left (y\right ) \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.680 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.654 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (\frac {1}{4}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
4.212 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.438 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right )^{2} \\
y \left (0\right ) &= {\frac {101}{100}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right )^{2}+\frac {1}{100} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right )^{2}-\frac {1}{100} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.887 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✗ | ✓ | 2.007 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.898 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.830 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y-3} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y-3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y-3} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y-3} \\
y \left (-1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
52.256 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
3.947 |
|
| \begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.889 |
|
| \begin{align*}
m^{\prime }&=-\frac {k}{m^{2}} \\
m \left (0\right ) &= m_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
4.099 |
|
| \begin{align*}
u^{\prime }&=a \sqrt {1+u^{2}} \\
u \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| \begin{align*}
x^{\prime }&=k \left (A -x\right )^{2} \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.280 |
|
| \begin{align*}
y^{\prime }&=5 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.744 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
3 y^{\prime }+12 y&=4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
L i^{\prime }+R i&=E \\
i \left (0\right ) &= i_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.320 |
|
| \begin{align*}
T^{\prime }&=k \left (T-T_{m} \right ) \\
T \left (0\right ) &= T_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.215 |
|
| \begin{align*}
e^{\prime }&=-\frac {e}{r c} \\
e \left (4\right ) &= e_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (2\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.937 |
|
| \begin{align*}
\left (1+z^{\prime }\right ) {\mathrm e}^{-z}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.034 |
|
| \begin{align*}
y^{\prime }+5 y&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime }-2 y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
L y^{\prime }+R y&=E \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.038 |
|
| \begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
4.741 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
4.471 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.407 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.207 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime }+y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime }-y&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime }&=1+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.521 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {1+y}{y^{2}}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.947 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{1-y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.538 |
|
| \begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
12.736 |
|
| \begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.196 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.723 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| \begin{align*}
w^{\prime }&=-\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \\
w \left (1\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.200 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.042 |
|
| \begin{align*}
h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.494 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
c y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
c y^{\prime }&=b y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
y^{\prime }+y^{2}-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.164 |
|
| \begin{align*}
y^{\prime }-y^{2}-3 y+4&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime }+a y^{2}-b&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.674 |
|
| \begin{align*}
y^{\prime }-\left (A y-a \right ) \left (B y-b \right )&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 7.311 |
|
| \begin{align*}
y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.129 |
|
| \begin{align*}
y^{\prime }-\sqrt {{| y|}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
y^{\prime }-a \sqrt {1+y^{2}}-b&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
46.625 |
|
| \begin{align*}
y^{\prime }-a \cos \left (y\right )+b&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
16.967 |
|
| \begin{align*}
y^{\prime } y-\sqrt {a y^{2}+b}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| \begin{align*}
y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
7.526 |
|
| \begin{align*}
{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.500 |
|
| \begin{align*}
a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.270 |
|
| \begin{align*}
{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.637 |
|
| \begin{align*}
y^{\prime }&=f \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime } y-y&=A \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.441 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=a^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
x^{\prime }&=x \left (1-\frac {x}{4}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.746 |
|
| \begin{align*}
x^{\prime }&=\sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.405 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{-2 x} \\
x \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 3.033 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.813 |
|
| \begin{align*}
u^{\prime }&=\frac {1}{5-2 u} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
x^{\prime }&=a x+b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| \begin{align*}
Q^{\prime }&=\frac {Q}{4+Q^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| \begin{align*}
y^{\prime }&=r \left (a -y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime }+y+\frac {1}{y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.817 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{2 y+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
x^{\prime }&=x \left (4+x\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
x^{\prime }&=a x+b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
x^{\prime }&=a x+b x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.280 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.717 |
|
| \begin{align*}
x^{\prime }&=1-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
x^{\prime }&=x \left (2-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x^{\prime }&=\left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.146 |
|
| \begin{align*}
x^{\prime }&=-x \left (1-x\right ) \left (2-x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.910 |
|
| \begin{align*}
x^{\prime }&=x^{2}-x^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.356 |
|
| \begin{align*}
x^{\prime }+p x&=q \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.678 |
|
| \begin{align*}
x^{\prime }&=\lambda x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
m v^{\prime }&=-m g +k v^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.674 |
|
| \begin{align*}
x^{\prime }&=k x-x^{2} \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.151 |
|
| \begin{align*}
x^{\prime }&=-x \left (k^{2}+x^{2}\right ) \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✗ |
68.906 |
|
| \begin{align*}
x^{\prime }&=k x-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| \begin{align*}
y&={y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
15.173 |
|
| \begin{align*}
y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y^{\prime }+\frac {1}{2 y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| \begin{align*}
y^{\prime }-2 \sqrt {{| y|}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.181 |
|
| \begin{align*}
y^{\prime }-y^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.812 |
|
| \begin{align*}
y^{\prime }+3 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| \begin{align*}
y^{\prime }&=1-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&=1+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.664 |
|
| \begin{align*}
y^{\prime }&=4-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.389 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.322 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
y^{\prime }&={| y|} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.045 |
|
| \begin{align*}
y^{\prime }&=\ln \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| \begin{align*}
y^{\prime }&=4 y-5 \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.797 |
|
| \begin{align*}
y^{\prime }+3 y&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| \begin{align*}
y^{\prime }&=a y+b \\
y \left (c \right ) &= d \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.950 |
|
| \begin{align*}
y^{\prime }&=3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
y^{\prime }&=1-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime }&=1-y \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.588 |
|
| \begin{align*}
y^{\prime }&=y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.191 |
|
| \begin{align*}
2 y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
y^{\prime }&=4 y+1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.948 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
28.122 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.178 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.484 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.120 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\
y \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.517 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\
y \left (0\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.532 |
|
| \begin{align*}
y^{\prime }-i y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.749 |
|
| \begin{align*}
y^{\prime }&=2 y+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.529 |
|
| \begin{align*}
y^{\prime }&=2-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
x^{\prime }&=1+x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.289 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{2 y+1} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.369 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.991 |
|
| \begin{align*}
y^{\prime }&=\sec \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.353 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.010 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.915 |
|
| \begin{align*}
y^{\prime }&=2 y+1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
y^{\prime }&=\frac {1-y^{2}}{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.053 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{2 y+3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+5}{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.947 |
|
| \begin{align*}
y^{\prime }&=1-2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.557 |
|
| \begin{align*}
y^{\prime }&=4 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| \begin{align*}
y^{\prime }&=2 y \left (1-y\right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.273 |
|
| \begin{align*}
y^{\prime }&=3 y \left (1-y\right ) \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.239 |
|
| \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
12.952 |
|
| \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
12.477 |
|
| \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
15.353 |
|
| \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
12.842 |
|
| \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
12.834 |
|
| \begin{align*}
y^{\prime }&=y^{2}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.123 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.666 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.368 |
|
| \begin{align*}
\theta ^{\prime }&=\frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
24.396 |
|
| \begin{align*}
\theta ^{\prime }&=\frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
24.395 |
|
| \begin{align*}
v^{\prime }&=-\frac {v}{R C} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.333 |
|
| \begin{align*}
v^{\prime }&=\frac {K -v}{R C} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| \begin{align*}
y^{\prime }&=2 y+1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
8.225 |
|
| \begin{align*}
w^{\prime }&=\left (3-w\right ) \left (w+1\right ) \\
w \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
1.026 |
|
| \begin{align*}
w^{\prime }&=\left (3-w\right ) \left (w+1\right ) \\
w \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
0.926 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {2}{y}} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.109 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {2}{y}} \\
y \left (1\right ) &= 2 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✗ | ✓ | 0.875 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
y \left (0\right ) &= {\frac {1}{5}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
10.250 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.245 |
|
| \begin{align*}
y^{\prime }&=2-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
\theta ^{\prime }&=\frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \\
\theta \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
26.312 |
|
| \begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
3.846 |
|
| \begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| \begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
4.095 |
|
| \begin{align*}
y^{\prime }&=y \left (y-1\right ) \left (y-3\right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
2.304 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.422 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
29.214 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\left (2+y\right )^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.472 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.532 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.618 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.418 |
|
| \begin{align*}
y^{\prime }&=3 y \left (y-2\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.503 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y-12 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
1.309 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y-12 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
2.297 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y-12 \\
y \left (0\right ) &= 6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.336 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y-12 \\
y \left (0\right ) &= 5 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✗ | ✗ | 1.228 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.244 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
26.294 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.071 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
y \left (0\right ) &= \pi \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
1.072 |
|
| \begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.542 |
|
| \begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.541 |
|
| \begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (3\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.898 |
|
| \begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.862 |
|
| \begin{align*}
w^{\prime }&=w \cos \left (w\right ) \\
w \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.810 |
|
| \begin{align*}
w^{\prime }&=\left (1-w\right ) \sin \left (w\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.404 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y-2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| \begin{align*}
v^{\prime }&=-v^{2}-2 v-2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
w^{\prime }&=3 w^{3}-12 w^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
10.159 |
|
| \begin{align*}
y^{\prime }&=1+\cos \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.237 |
|
| \begin{align*}
y^{\prime }&=\tan \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.962 |
|
| \begin{align*}
y^{\prime }&=y \ln \left ({| y|}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
16.367 |
|
| \begin{align*}
w^{\prime }&=\left (w^{2}-2\right ) \arctan \left (w\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.504 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= 2 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✗ | ✓ | 0.471 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.679 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.694 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.674 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (3\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime }&=y \cos \left (\frac {\pi y}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.622 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.434 |
|
| \begin{align*}
y^{\prime }&=y \sin \left (\frac {\pi y}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.612 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.499 |
|
| \begin{align*}
y^{\prime }&=\cos \left (\frac {\pi y}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
6.044 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.959 |
|
| \begin{align*}
y^{\prime }&=y \sin \left (\frac {\pi y}{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.251 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.348 |
|
| \begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.936 |
|
| \begin{align*}
y^{\prime }&=-\sin \left (y\right )^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
28.319 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.224 |
|
| \begin{align*}
y^{\prime }&=3-2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
y^{\prime }&=3+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.781 |
|
| \begin{align*}
y^{\prime }&=2 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.634 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✗ | 3.784 |
|
| \begin{align*}
y^{\prime }&=y^{2}-2 y+1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime }&=3-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
2.302 |
|
| \begin{align*}
y^{\prime }&=3-\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
26.329 |
|
| \begin{align*}
y^{\prime }-y^{3}&=8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{3}-25 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| \begin{align*}
y^{\prime }+2 y-y^{2}&=-2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.303 |
|
| \begin{align*}
y^{\prime }+4 y&=8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime }&=y^{2}+9 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.672 |
|
| \begin{align*}
y^{\prime }-4 y&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
27.312 |
|
| \begin{align*}
y^{\prime }&=200 y-2 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
y^{\prime }&=\tan \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.231 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-y}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| \begin{align*}
y^{\prime }&=200 y-2 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime }-2 y&=-10 \\
y \left (0\right ) &= 8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
y^{\prime }&=4 y+8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime }+4 y&=y^{3} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.739 |
|
| \begin{align*}
2 y+y^{\prime }&=6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime }+3 y&=3 y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
\left (y^{2}-4\right ) y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{2}+1-y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.729 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{5}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.991 |
|
| \begin{align*}
y^{\prime }&=6 y^{{2}/{3}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.538 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.807 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (4\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.632 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.643 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
10.545 |
|
| \begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (-4\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
27.977 |
|
| \begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (0\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.721 |
|
| \begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (3\right ) &= -6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.408 |
|
| \begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (4\right ) &= -5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
35.981 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 3.530 |
|
| \begin{align*}
y^{\prime }&=-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
31.080 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.717 |
|
| \begin{align*}
y^{\prime }+k y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.822 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y+2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime }&=y^{3}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime }&=y^{3}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
23.464 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.319 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
11.197 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.914 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
1&=y^{\prime } \cos \left (y\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
3.028 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{\ln \left (y\right )} \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime }&=\left (3 y+1\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
y^{\prime }&=-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
y^{\prime }&=16 y-8 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.021 |
|
| \begin{align*}
y^{\prime }&=12+4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
-y+y^{\prime }&=10 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.327 |
|
| \begin{align*}
-1+3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y+y^{\prime }&=5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime }&=y+3 y^{{1}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.167 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.041 |
|
| \begin{align*}
y^{\prime }&=1-\cot \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.821 |
|
| \begin{align*}
y^{\prime }&=\left (y-1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| \begin{align*}
{\mathrm e}^{-y} y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| \begin{align*}
{\mathrm e}^{y}&={\mathrm e}^{4 y} y^{\prime }+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.496 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {y^{\prime }}{y}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.708 |
|
| \begin{align*}
y&=y^{\prime } \ln \left (y^{\prime }\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
16.954 |
|
| \begin{align*}
y&=\left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}}&=a^{{2}/{5}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.361 |
|
| \begin{align*}
y&=y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.909 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}}+a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}+y^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime }&=\frac {a y+b}{d +c y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.423 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.882 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.133 |
|
| \begin{align*}
y^{\prime }&=y+\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
y^{\prime }&=r y-k^{2} y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.225 |
|
| \begin{align*}
y^{\prime }&=a y+b y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.234 |
|
| \begin{align*}
y^{\prime }+y-y^{{1}/{4}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.415 |
|
| \begin{align*}
x^{\prime }&=\frac {x \sqrt {6 x-9}}{3} \\
x \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| \begin{align*}
y^{\prime }&=y \ln \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
y^{\prime }&=y \ln \left (y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| \begin{align*}
y^{\prime }&=k y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.403 |
|
| \begin{align*}
1+y^{2}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
v^{\prime }&=g -\frac {k v^{2}}{m} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.451 |
|
| \begin{align*}
x^{\prime }&=x^{2}-3 x+2 \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
8.438 |
|
| \begin{align*}
x^{\prime }&=b \,{\mathrm e}^{x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.977 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right )^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.183 |
|
| \begin{align*}
x^{\prime }&=\sqrt {x^{2}-1} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
36.364 |
|
| \begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
21.044 |
|
| \begin{align*}
x^{\prime }&=\tan \left (x\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
18.639 |
|
| \begin{align*}
x^{\prime }&=-\lambda x \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.774 |
|
| \begin{align*}
y^{\prime }+c y&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.554 |
|
| \begin{align*}
x^{\prime }&=k \left (A -n x\right ) \left (M -m x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
32.093 |
|
| \begin{align*}
y^{2} \left (1-{y^{\prime }}^{2}\right )&=b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
\left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
3 {y^{\prime }}^{5}-y^{\prime } y+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.340 |
|
| \begin{align*}
y&=\sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
8.832 |
|
| \begin{align*}
\left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| \begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.544 |
|
| \begin{align*}
y^{\prime }&=k y-c y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
12.358 |
|
| \begin{align*}
y^{\prime }&=y^{2}-6 y-16 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.474 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
21.076 |
|
| \begin{align*}
y^{\prime }&=y \left (y-2\right ) \left (3+y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.166 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (1+y\right ) \left (y-4\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
53.354 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.404 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.858 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.091 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.696 |
|
| \begin{align*}
y^{\prime }&=y-\mu y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.851 |
|
| \begin{align*}
y^{\prime }&=y \left (\mu -y\right ) \left (\mu -2 y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
74.530 |
|
| \begin{align*}
x^{\prime }&=\mu -x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.087 |
|
| \begin{align*}
x^{\prime }&=x-\frac {\mu x}{1+x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
25.166 |
|
| \begin{align*}
x^{\prime }&=x^{3}+a x^{2}-b x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
57.283 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.037 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y \left (1-y\right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.750 |
|
| \begin{align*}
x^{\prime }+\ln \left (3\right ) x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.077 |
|
| \begin{align*}
x^{\prime }+4 x&=4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.631 |
|
| \begin{align*}
x^{\prime }&=-2 x+3 \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.119 |
|
| \begin{align*}
x^{\prime }&=k x \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.895 |
|
| \begin{align*}
x^{\prime }+k x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.892 |
|
| \begin{align*}
x^{\prime }-k^{2} x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x^{{1}/{3}}}{2} \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
7.672 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| \begin{align*}
{\mathrm e}^{x^{\prime }}&=x \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
x^{\prime }&=\sqrt {1-x^{2}} \\
x \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
26.794 |
|
| \begin{align*}
x^{\prime }&=x^{{1}/{4}} \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
6.364 |
|
| \begin{align*}
x^{\prime }&=x^{p} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 4.538 |
|
| \begin{align*}
x^{\prime }&=\sin \left (x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
21.275 |
|
| \begin{align*}
x^{\prime }&=\arctan \left (x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| \begin{align*}
x^{\prime }&=\ln \left (1+x^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.545 |
|
| \begin{align*}
x^{\prime }&=2+\sin \left (x\right ) \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
24.148 |
|
| \begin{align*}
x^{\prime }&=\left (2+x\right ) \left (1-x^{4}\right ) \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
62.044 |
|
| \begin{align*}
x^{\prime }&=x^{3}-x \\
x \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
56.438 |
|
| \begin{align*}
x^{\prime }&=1+x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.194 |
|
| \begin{align*}
x^{\prime }&=x^{2}-1 \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
2.335 |
|
| \begin{align*}
x^{\prime }&=x^{2}+x \\
x \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| \begin{align*}
x^{\prime }&=\frac {x^{2}+x}{2 x+1} \\
x \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.951 |
|
| \begin{align*}
x^{\prime }&=\frac {-x+x^{2}}{2 x-1} \\
x \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.795 |
|
| \begin{align*}
x^{\prime }&=\sqrt {1-x^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.062 |
|
| \begin{align*}
x^{\prime }&=\lambda x-x^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.428 |
|
| \begin{align*}
x^{\prime }&=\lambda x-x^{3}-x^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.430 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.947 |
|
| \begin{align*}
y^{\prime }&=6 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.226 |
|
| \begin{align*}
y^{\prime }&=-5 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.153 |
|
| \begin{align*}
y^{\prime }-k y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.683 |
|
| \begin{align*}
2 y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.571 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
\ln \left (y\right )+\frac {y^{\prime }}{y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.230 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.543 |
|
| \begin{align*}
2 y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.448 |
|
| \begin{align*}
y^{\prime }&=-2+3 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.289 |
|
| \begin{align*}
2 y^{\prime }+y-2 y^{\prime } \ln \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
17.271 |
|
| \begin{align*}
y^{\prime }&=\alpha \left (A -y\right ) y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
15.107 |
|
| \begin{align*}
y^{\prime }-k y&=A \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.397 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \\
i \left (0\right ) &= i_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.515 |
|
| \begin{align*}
R q^{\prime }+\frac {q}{c}&=E \\
q \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.590 |
|
| \begin{align*}
y^{\prime }+y&=0 \\
y \left (3\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.574 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {{| y|}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.530 |
|
| \begin{align*}
y^{\prime }&=5 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }+y&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime }+5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.670 |
|
| \begin{align*}
y^{\prime }-5 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
y^{\prime }-2 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.495 |
|
| \begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.675 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime }&=\sec \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.089 |
|
| \begin{align*}
y^{\prime }&=y^{p} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.807 |
|
| \begin{align*}
{| y^{\prime }|}+{| y|}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.020 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
i^{\prime }+5 i&=10 \\
i \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.979 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
n^{\prime }&=-a n \\
n \left (0\right ) &= n_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
r^{3} r^{\prime }&=\sqrt {a^{8}-r^{8}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.065 |
|
| \begin{align*}
y^{\prime }+3 y&=5 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
p^{\prime }&=15-20 p \\
p \left (0\right ) &= {\frac {7}{10}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
r r^{\prime }&=a \\
r \left (0\right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
2.156 |
|
| \begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime }-y&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.360 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.828 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.189 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
p^{\prime }&=a p-b p^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.862 |
|
| \begin{align*}
\cos \left (x \right ) \sin \left (y\right ) y^{\prime }-\cos \left (x \right ) \cos \left (y\right )-\cos \left (x \right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
x^{\prime }&=k \left (a -x\right ) \left (b -x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.831 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
y^{\prime } y&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime }-3 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{5} y^{\prime }+5 y^{6}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
v v^{\prime }&=g \\
v \left (x_{0} \right ) &= v_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
L i^{\prime }+R i&=e \\
i \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.244 |
|
| \begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| \begin{align*}
y^{\prime }&=2 y \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
2 y y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime }&=3 y+12 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.357 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.764 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| \begin{align*}
y^{\prime }&=3 y+12 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.183 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime }&=2 y \left (5-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y y^{\prime }&=1-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime }&=4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.443 |
|
| \begin{align*}
-y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.050 |
|
| \begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.075 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.840 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.512 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.907 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.410 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.008 |
|
| \begin{align*}
y^{\prime }&=a y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.962 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.088 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| \begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
y^{\prime }&=2-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
y^{\prime }&=2-y \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
y^{\prime }&=2-y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
y^{\prime }&=-2 y+8 \\
y \left (0\right ) &= 6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
y^{\prime }-9 y&=90 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.740 |
|
| \begin{align*}
y^{\prime }+9 y&=90 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
y^{\prime }-4 y&=-8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime }+4 y&=8 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
y^{\prime }+2 y&=6 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.709 |
|
| \begin{align*}
y^{\prime }+2 y&=-6 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= 4 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.554 |
|
| \begin{align*}
y^{\prime }&=y-1 \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.557 |
|
| \begin{align*}
y^{\prime }&=a y-y^{2} b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.797 |
|
| \begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime }&=y^{2}+y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| \begin{align*}
y^{\prime }&=a y-b y^{n} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.931 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
y^{\prime }&=-y^{2}+y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
y^{\prime }&=y-y^{2}-\frac {1}{4} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.514 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y\right ) \left (2-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime }&=y \left (1-\ln \left (y\right )\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.877 |
|
| \begin{align*}
y^{\prime }&=2 \left (1-y\right ) \left (1-{\mathrm e}^{y}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.026 |
|
| \begin{align*}
y^{\prime }&=\left (1-y^{2}\right ) \left (4-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| \begin{align*}
y^{\prime }&=k \left (m^{4}-y^{4}\right ) \\
y \left (0\right ) &= \frac {m}{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.320 |
|
| \begin{align*}
y^{\prime }&=a y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.449 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
25.374 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{4} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.633 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.879 |
|
| \begin{align*}
y^{\prime }&=a y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.315 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
6.954 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
3 y^{\prime }&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
\left (y-1\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= -{\frac {1}{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.170 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.615 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.154 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (2\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.144 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.361 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.552 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| \begin{align*}
y^{\prime }&=2 y-4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime }&=y \left (y-3\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
1+{y^{\prime }}^{2}&=\frac {1}{y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.721 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.225 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.173 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime }&=\left (y-2\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
y^{\prime }&=10+3 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime }&=y \left (2-y\right ) \left (4-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
y^{\prime }&=y \ln \left (y+2\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.048 |
|
| \begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{\pi }-\sin \left (y\right ) \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 0.828 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y-6 \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.739 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y-6 \\
y \left (2\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.721 |
|
| \begin{align*}
y^{\prime }-\left (y-1\right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|