2.4.12 first order ode clairaut

Table 2.1073: first order ode clairaut [188]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

169

\begin{align*} y&=y^{\prime } x -\frac {{y^{\prime }}^{2}}{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.210

1536

\begin{align*} y^{\prime }&=-1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.625

3324

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.293

3325

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.807

3326

\begin{align*} y&=y^{\prime } x -\sqrt {y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

1.688

3327

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.648

3328

\begin{align*} y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.147

3329

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{{2}/{3}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.621

3330

\begin{align*} y&=y^{\prime } x +{\mathrm e}^{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.743

3331

\begin{align*} \left (y-y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.406

3332

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y-2&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.790

4087

\begin{align*} \left (y-y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.230

4382

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.693

4383

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.329

4387

\begin{align*} 2 {y^{\prime }}^{2} \left (y-y^{\prime } x \right )&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.580

5386

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.227

5387

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.223

5390

\begin{align*} {y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.229

5391

\begin{align*} {y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.235

5392

\begin{align*} {y^{\prime }}^{2}-\left (-x +2\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.260

5393

\begin{align*} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.253

5398

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.236

5402

\begin{align*} {y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.238

5404

\begin{align*} {y^{\prime }}^{2}-a x y^{\prime }+a y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.276

5406

\begin{align*} {y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c&=b y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.282

5436

\begin{align*} 2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.235

5458

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.688

5464

\begin{align*} x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.269

5465

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.289

5466

\begin{align*} x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.315

5468

\begin{align*} x {y^{\prime }}^{2}+\left (a +b x -y\right ) y^{\prime }-b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.336

5481

\begin{align*} \left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.309

5482

\begin{align*} \left (a -x \right ) {y^{\prime }}^{2}+y^{\prime } y-b&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.298

5485

\begin{align*} \left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.306

5503

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.229

5504

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.467

5525

\begin{align*} \left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+b +y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.377

5622

\begin{align*} {y^{\prime }}^{3}+a x y^{\prime }-a y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.397

5623

\begin{align*} {y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.487

5631

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.494

5646

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.618

5652

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.196

5682

\begin{align*} 2 \sqrt {a y^{\prime }}+y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

2.158

5688

\begin{align*} \sqrt {a^{2}+b^{2} {y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.255

5689

\begin{align*} a \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.759

5691

\begin{align*} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+y^{\prime } x -y&=0 \\ \end{align*}

[_Clairaut]

17.441

5692

\begin{align*} \cos \left (y^{\prime }\right )+y^{\prime } x&=y \\ \end{align*}

[_Clairaut]

1.312

5697

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}&=1 \\ \end{align*}

[_Clairaut]

2.237

5701

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.721

5704

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.839

5707

\begin{align*} y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.167

5708

\begin{align*} y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[_Clairaut]

12.283

6822

\begin{align*} y&=y^{\prime } x +\frac {a y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \\ \end{align*}

[_Clairaut]

6.210

6885

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.208

6886

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.769

7565

\begin{align*} y&=y^{\prime } x +2 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.261

7566

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.862

7847

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.150

7948

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.263

7957

\begin{align*} y&=y^{\prime } x -2 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.282

9732

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.231

9741

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.207

9742

\begin{align*} y&=y^{\prime } x +k {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.284

9747

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.319

9748

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.313

9751

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.685

9817

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.755

9822

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.411

9825

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right )&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.720

9826

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.603

9829

\begin{align*} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.369

10003

\begin{align*} \frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.154

10021

\begin{align*} f^{\prime } x -f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \\ \end{align*}

[_Clairaut]

3.583

11668

\begin{align*} {y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.326

11669

\begin{align*} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.339

11670

\begin{align*} {y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.293

11675

\begin{align*} {y^{\prime }}^{2}+\left (a x +b \right ) y^{\prime }-a y+c&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.372

11688

\begin{align*} 2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.302

11706

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.841

11714

\begin{align*} \left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.398

11715

\begin{align*} \left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.389

11716

\begin{align*} \left (3 x +5\right ) {y^{\prime }}^{2}-\left (x +3 y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.415

11717

\begin{align*} a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.532

11718

\begin{align*} a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.544

11726

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

2.181

11734

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.401

11739

\begin{align*} \left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}+b&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.543

11807

\begin{align*} {y^{\prime }}^{3}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.460

11808

\begin{align*} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.674

11819

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.675

11841

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.016

11850

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

7.471

11855

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1&=0 \\ \end{align*}

[_Clairaut]

4.771

14060

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.252

14070

\begin{align*} y^{\prime } y&=\left (-b +x \right ) {y^{\prime }}^{2}+a \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.234

14076

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.212

14080

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.377

14082

\begin{align*} x^{2} {y^{\prime }}^{2}-2 \left (y x -2\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

0.417

15047

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ y \left (2\right ) &= -1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.213

15048

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.170

15064

\begin{align*} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.199

15328

\begin{align*} {y^{\prime }}^{2}-y^{\prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.193

15393

\begin{align*} y&=y^{\prime } x +\sqrt {1-{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.428

15395

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.509

15396

\begin{align*} y&=y^{\prime } x -\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.585

15569

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (6\right ) &= -9 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.496

15649

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.283

15652

\begin{align*} y^{\prime }&=-\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \\ y \left (1\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.576

16310

\begin{align*} y^{\prime }+2 x&=2 \sqrt {y+x^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.420

17298

\begin{align*} t y^{\prime }-{y^{\prime }}^{3}&=y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.432

17299

\begin{align*} t y^{\prime }-y-2 \left (-y+t y^{\prime }\right )^{2}&=y^{\prime }+1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.464

17300

\begin{align*} t y^{\prime }-y-1&={y^{\prime }}^{2}-y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.246

17301

\begin{align*} 1+y-t y^{\prime }&=\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.855

17302

\begin{align*} 1+2 y-2 t y^{\prime }&=\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.919

17335

\begin{align*} y&=t y^{\prime }+3 {y^{\prime }}^{4} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.931

17337

\begin{align*} y-t y^{\prime }&=-2 {y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.428

17338

\begin{align*} y-t y^{\prime }&=-4 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.252

18016

\begin{align*} y&=y^{\prime } x +\frac {a}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.513

18017

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.158

18018

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y-y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.194

18019

\begin{align*} y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.692

18020

\begin{align*} x&=\frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.365

18039

\begin{align*} y&=y^{\prime } x +\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.138

18558

\begin{align*} y^{\prime }&=-\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \\ y \left (2\right ) &= -1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.499

19123

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.196

19125

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.239

19132

\begin{align*} y^{\prime }&=-x +\sqrt {x^{2}+2 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.449

19133

\begin{align*} y^{\prime }&=-x -\sqrt {x^{2}+2 y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.352

19771

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.966

19877

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.822

19892

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.766

19988

\begin{align*} y&=y^{\prime } x +\arcsin \left (y^{\prime }\right ) \\ \end{align*}

[_Clairaut]

2.891

19993

\begin{align*} y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.074

20015

\begin{align*} y&=y^{\prime } x +\frac {m}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.420

20017

\begin{align*} y&=y^{\prime } x +a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.660

20018

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.163

20028

\begin{align*} y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=m^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.242

20029

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}+a^{2} y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.293

20030

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.167

20034

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-b^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.400

20414

\begin{align*} y&=y^{\prime } x +\frac {a}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.563

20415

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.463

20416

\begin{align*} y&=y^{\prime } x +a y^{\prime } \left (1-y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.250

20417

\begin{align*} y&=y^{\prime } x +\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.555

20418

\begin{align*} y&=y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.719

20419

\begin{align*} \left (y-y^{\prime } x \right ) \left (y^{\prime }-1\right )&=y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.259

20420

\begin{align*} x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.505

20421

\begin{align*} y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.272

20422

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.370

20438

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}+a^{4}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.746

20447

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.317

20453

\begin{align*} y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=m \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.316

20454

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.202

20475

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+b^{2}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.487

20827

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.809

20981

\begin{align*} y&=y^{\prime } x -\sqrt {y^{\prime }-1} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.986

20982

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.233

21097

\begin{align*} x&=t x^{\prime }-{x^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.244

21098

\begin{align*} x&=t x^{\prime }-{\mathrm e}^{x^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.741

21099

\begin{align*} x&=t x^{\prime }-\ln \left (x^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.402

21100

\begin{align*} x&=t x^{\prime }+\frac {1}{x^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.900

21468

\begin{align*} \left (-y+y^{\prime } x \right )^{2}-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.412

21469

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.346

21470

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.470

21857

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.545

21860

\begin{align*} y^{2}-2 x y^{\prime } y+x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

28.741

21866

\begin{align*} {y^{\prime }}^{2}+y&=y^{\prime } x +1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.389

21868

\begin{align*} \left (y-y^{\prime } x \right )^{2}&=y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

1.426

21872

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

30.557

22042

\begin{align*} y+1-y^{\prime } x&=0 \\ \end{align*}

[_separable]

1.666

22358

\begin{align*} y^{\prime }&=\frac {\left (\sqrt {y x +1}-1\right )^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

6.492

22501

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.263

22502

\begin{align*} y&=y^{\prime } x +1+4 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.157

22503

\begin{align*} y&=y^{\prime } x -\tan \left (y^{\prime }\right ) \\ \end{align*}

[_Clairaut]

1.409

22504

\begin{align*} y&=y^{\prime } x +\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.117

23128

\begin{align*} -y+y^{\prime } x&=1 \\ y \left (2\right ) &= 3 \\ \end{align*}

[_separable]

2.053

24796

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.154

24805

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.121

24806

\begin{align*} y&=y^{\prime } x +k {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.173

24811

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.210

24812

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.195

24816

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.406

24817

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{n} \\ \end{align*}

[_Clairaut]

1.486

24854

\begin{align*} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.234

24855

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.058

24860

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.228

24863

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right )&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.585

24864

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.462