| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23601 |
\begin{align*}
y+2&=\left (2 x +y-4\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.365 |
|
| 23602 |
\begin{align*}
y^{\prime }&=-\frac {-x -\textit {\_F1} \left (y^{2}-2 x \right )}{\sqrt {y^{2}}\, x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.365 |
|
| 23603 |
\begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.377 |
|
| 23604 |
\begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.388 |
|
| 23605 |
\begin{align*}
y^{\prime }-\frac {\tan \left (y\right )}{x +1}&=\left (x +1\right ) {\mathrm e}^{x} \sec \left (y\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
11.390 |
|
| 23606 |
\begin{align*}
\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.415 |
|
| 23607 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.424 |
|
| 23608 |
\begin{align*}
\left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (y^{\prime } y+x \right )+\frac {\left (a -b \right ) \left (y^{\prime } y-x \right )}{a +b}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.435 |
|
| 23609 |
\begin{align*}
y+\sqrt {y x}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.445 |
|
| 23610 |
\begin{align*}
y^{\prime }&=\frac {y+x \sqrt {y^{2}+x^{2}}+x^{3} \sqrt {y^{2}+x^{2}}+x^{4} \sqrt {y^{2}+x^{2}}}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.448 |
|
| 23611 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{4}+\left (-x^{2}+1\right ) y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.454 |
|
| 23612 |
\begin{align*}
x \left (\left (y^{2}+x^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (y^{2}+x^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.457 |
|
| 23613 |
\begin{align*}
\left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.483 |
|
| 23614 |
\begin{align*}
\left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.485 |
|
| 23615 |
\begin{align*}
x +2 y-1-\left (x +2 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.485 |
|
| 23616 |
\begin{align*}
y^{\prime }&=\frac {\cosh \left (x \right )}{\sinh \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sinh \left (x \right )\right )\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.488 |
|
| 23617 |
\begin{align*}
y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.508 |
|
| 23618 | \begin{align*}
x y \left (1-y^{\prime }\right )&=x^{2} y^{\prime }+y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 11.513 |
|
| 23619 |
\begin{align*}
y^{\prime }&=\frac {a^{2} x y+a +a^{2} x +a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{2} x^{2} \left (a x y+1+a x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.518 |
|
| 23620 |
\begin{align*}
y^{\prime }&=x^{2} y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.528 |
|
| 23621 |
\begin{align*}
y^{\prime }&=\frac {\left (x^{4}+3 x y^{2}+3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.532 |
|
| 23622 |
\begin{align*}
y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.550 |
|
| 23623 |
\begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.551 |
|
| 23624 |
\begin{align*}
x^{2}+6 y^{2}-4 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.557 |
|
| 23625 |
\begin{align*}
\left (2 x^{3}-x^{2} y+y^{3}\right ) y-x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.558 |
|
| 23626 |
\begin{align*}
y^{\prime } x -y-\sqrt {y^{2}+x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.560 |
|
| 23627 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.562 |
|
| 23628 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{-1+k}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
11.565 |
|
| 23629 |
\begin{align*}
y^{\prime }&=\frac {\left (-108 x^{{3}/{2}} y+18 x^{{9}/{2}}-108 x^{{3}/{2}}-216 y^{3}+108 x^{3} y^{2}-18 x^{6} y+x^{9}\right ) \sqrt {x}}{-216 y+36 x^{3}-216} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.569 |
|
| 23630 |
\begin{align*}
y^{3} y^{\prime }+y^{\prime \prime }&=y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.571 |
|
| 23631 |
\begin{align*}
y^{\prime } x&=x +\frac {y}{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.578 |
|
| 23632 |
\begin{align*}
y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.580 |
|
| 23633 |
\begin{align*}
y^{\prime }&=\frac {-3+x +y}{x -y-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.585 |
|
| 23634 |
\begin{align*}
y \left (x \tan \left (x \right )+\ln \left (y\right )\right )+\tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
11.599 |
|
| 23635 |
\begin{align*}
\left (2 \sin \left (y\right )-x \right ) y^{\prime }&=\tan \left (y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.617 |
|
| 23636 |
\begin{align*}
y^{\prime } x&=x^{3} y^{3}-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.624 |
|
| 23637 | \begin{align*}
y^{\prime }&=\frac {x +y+y^{2}-2 x y \ln \left (x \right )+\ln \left (x \right )^{2} x^{2}}{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 11.627 |
|
| 23638 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.640 |
|
| 23639 |
\begin{align*}
y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
11.657 |
|
| 23640 |
\begin{align*}
\sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= \frac {\sqrt {3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.662 |
|
| 23641 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.668 |
|
| 23642 |
\begin{align*}
y^{\prime }&=\frac {y x +3}{5 x -y} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.670 |
|
| 23643 |
\begin{align*}
y+\left (x -2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.681 |
|
| 23644 |
\begin{align*}
y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.697 |
|
| 23645 |
\begin{align*}
y^{\prime }&=\frac {\left (2 x +2+x^{3} y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.711 |
|
| 23646 |
\begin{align*}
x y^{2}-x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.713 |
|
| 23647 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
11.716 |
|
| 23648 |
\begin{align*}
y^{\prime }&=3 x y^{{1}/{3}} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.718 |
|
| 23649 |
\begin{align*}
x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.730 |
|
| 23650 |
\begin{align*}
y^{\prime }&=\sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.732 |
|
| 23651 |
\begin{align*}
y^{\prime }&=-\frac {\left (-\frac {1}{x}-\textit {\_F1} \left (y^{2}-2 x \right )\right ) x}{\sqrt {y^{2}}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.738 |
|
| 23652 |
\begin{align*}
y&=x \left (x^{2} y-1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.744 |
|
| 23653 |
\begin{align*}
y^{\prime }+\frac {x y}{a^{2}+x^{2}}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.746 |
|
| 23654 |
\begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.799 |
|
| 23655 |
\begin{align*}
x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime }&=\left (3 x^{2}+y^{2}\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.815 |
|
| 23656 |
\begin{align*}
y^{\prime }&=y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.816 |
|
| 23657 | \begin{align*}
y^{\prime }&=\frac {-3 x -2 y-1}{2 x +3 y-1} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 11.818 |
|
| 23658 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\operatorname {arccot}\left (x \right )^{n} \lambda \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.826 |
|
| 23659 |
\begin{align*}
x^{\prime }&=-x+y-z \\
y^{\prime }&=2 x-y-4 z \\
z^{\prime }&=3 x-y+z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.829 |
|
| 23660 |
\begin{align*}
x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.835 |
|
| 23661 |
\begin{align*}
2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.845 |
|
| 23662 |
\begin{align*}
2 x \left (1+y\right )-y^{\prime } y&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.856 |
|
| 23663 |
\begin{align*}
3 x^{2}-2 y^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.879 |
|
| 23664 |
\begin{align*}
x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.902 |
|
| 23665 |
\begin{align*}
y^{\prime }&=\frac {2 x y}{y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.903 |
|
| 23666 |
\begin{align*}
x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.904 |
|
| 23667 |
\begin{align*}
a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.915 |
|
| 23668 |
\begin{align*}
c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.915 |
|
| 23669 |
\begin{align*}
\left (x +2 y+1\right ) y^{\prime }+7+x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.921 |
|
| 23670 |
\begin{align*}
\left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
11.930 |
|
| 23671 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )&=x \left (x^{2}+1\right ) \cos \left (y\right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.938 |
|
| 23672 |
\begin{align*}
2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.938 |
|
| 23673 |
\begin{align*}
2 y^{\prime } x&=2 x^{3}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.957 |
|
| 23674 |
\begin{align*}
y^{\prime }&=\frac {2 x +7 y}{2 x -2 y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.012 |
|
| 23675 |
\begin{align*}
y^{\prime }+\left (4 a^{2} x +3 a \,x^{2}+b \right ) y^{3}+3 x y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.014 |
|
| 23676 |
\begin{align*}
y^{\prime }&=-x^{2}-x -1-\left (2 x +1\right ) y-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.020 |
|
| 23677 | \begin{align*}
y^{\prime } x +2 y&=3 x^{3} y^{{4}/{3}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 12.023 |
|
| 23678 |
\begin{align*}
y^{\prime }&=-\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.026 |
|
| 23679 |
\begin{align*}
m y^{\prime \prime }+k y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.042 |
|
| 23680 |
\begin{align*}
y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.043 |
|
| 23681 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.044 |
|
| 23682 |
\begin{align*}
x^{2}+2 y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.056 |
|
| 23683 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.060 |
|
| 23684 |
\begin{align*}
y^{\prime }&=\frac {y x +y+x^{4} \sqrt {y^{2}+x^{2}}}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.068 |
|
| 23685 |
\begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.074 |
|
| 23686 |
\begin{align*}
x^{\prime }+2 t x&=-4 t x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.078 |
|
| 23687 |
\begin{align*}
y^{\prime }+y \sin \left (x \right )&=\sin \left (x \right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.092 |
|
| 23688 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.103 |
|
| 23689 |
\begin{align*}
a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.106 |
|
| 23690 |
\begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.109 |
|
| 23691 |
\begin{align*}
y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.133 |
|
| 23692 |
\begin{align*}
\left (x +y^{2}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.133 |
|
| 23693 |
\begin{align*}
2 x^{3} y^{\prime }&=\left (3 x^{2}+a y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.137 |
|
| 23694 |
\begin{align*}
12 x +4 y-8-\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.137 |
|
| 23695 |
\begin{align*}
{y^{\prime }}^{2}+x y {y^{\prime }}^{2}&=\ln \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
12.144 |
|
| 23696 |
\begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y&=y^{\prime } x \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.150 |
|
| 23697 | \begin{align*}
\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 12.152 |
|
| 23698 |
\begin{align*}
y^{\prime }&=\frac {2 x^{2}-4 x^{3} y+1+x^{4} y^{2}+x^{6} y^{3}-3 x^{5} y^{2}+3 x^{4} y-x^{3}}{x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.159 |
|
| 23699 |
\begin{align*}
y^{\prime }&=-\frac {16 x y^{3}-8 y^{3}-8 y+8 x y^{2}-2 x^{2} y^{3}-8+12 y x -6 y^{2} x^{2}+x^{3} y^{3}}{32 y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.174 |
|
| 23700 |
\begin{align*}
x^{\prime }&=2 x-3 y \\
y^{\prime }&=x+y+2 z \\
z^{\prime }&=5 y-7 z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.187 |
|