| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23701 |
\begin{align*}
y-y^{\prime } x&=a \left (y^{\prime }+y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.187 |
|
| 23702 |
\begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.193 |
|
| 23703 |
\begin{align*}
1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.195 |
|
| 23704 |
\begin{align*}
y^{\prime }&=t^{2}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.201 |
|
| 23705 |
\begin{align*}
x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
12.202 |
|
| 23706 |
\begin{align*}
x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.228 |
|
| 23707 |
\begin{align*}
x +\left (x -2 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.234 |
|
| 23708 |
\begin{align*}
y^{\prime }&=\frac {x +2 y-1}{2 x -y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.253 |
|
| 23709 |
\begin{align*}
y^{\prime \prime } x +\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
12.254 |
|
| 23710 |
\begin{align*}
y^{\prime } x&=y+2 \,{\mathrm e}^{-\frac {y}{x}} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.257 |
|
| 23711 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.262 |
|
| 23712 |
\begin{align*}
2 y^{\prime } x +3 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.274 |
|
| 23713 |
\begin{align*}
y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.283 |
|
| 23714 |
\begin{align*}
x^{\prime }&=6 x-72 y+44 z \\
y^{\prime }&=4 x-4 y+26 z \\
z^{\prime }&=6 x-63 y+38 z \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.287 |
|
| 23715 |
\begin{align*}
y&=\left (2 x +3 y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.288 |
|
| 23716 |
\begin{align*}
y^{\prime }&=\frac {y \left (1-x +y \ln \left (x \right ) x^{2}+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.299 |
|
| 23717 |
\begin{align*}
x \left (4+y\right ) y^{\prime }-y^{2}-2 y-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.319 |
|
| 23718 | \begin{align*}
y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{x +1} \\
\end{align*} | ✗ | ✓ | ✓ | ✓ | 12.326 |
|
| 23719 |
\begin{align*}
x +\left (2 x +3 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| 23720 |
\begin{align*}
y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| 23721 |
\begin{align*}
y^{\prime }&=t y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| 23722 |
\begin{align*}
2 y^{\prime } y+2 x +x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.340 |
|
| 23723 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.352 |
|
| 23724 |
\begin{align*}
y^{\prime }&=\frac {1+y^{4}-8 a x y^{2}+16 a^{2} x^{2}+y^{6}-12 y^{4} a x +48 y^{2} a^{2} x^{2}-64 a^{3} x^{3}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.352 |
|
| 23725 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=\frac {x^{2}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.353 |
|
| 23726 |
\begin{align*}
3 x \left (y x -2\right )+\left (x^{3}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.356 |
|
| 23727 |
\begin{align*}
y^{\prime }&=k y-c y^{2} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.358 |
|
| 23728 |
\begin{align*}
2 y^{2}+4 x^{2} y+\left (4 y x +3 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.365 |
|
| 23729 |
\begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.379 |
|
| 23730 |
\begin{align*}
\left (x^{2}+3 x \right ) y^{\prime }&=y^{3}+2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.391 |
|
| 23731 |
\begin{align*}
\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.408 |
|
| 23732 |
\begin{align*}
x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.409 |
|
| 23733 |
\begin{align*}
y^{\prime }&=\frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.410 |
|
| 23734 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+4 y x&=x \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.412 |
|
| 23735 |
\begin{align*}
x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
12.420 |
|
| 23736 |
\begin{align*}
\left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.431 |
|
| 23737 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.458 |
|
| 23738 | \begin{align*}
y^{\prime }&=-\frac {x^{2}+x +a x +a -2 \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 \left (x +1\right )} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 12.470 |
|
| 23739 |
\begin{align*}
4 x +3 y-7+\left (4 x +3 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.474 |
|
| 23740 |
\begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
12.477 |
|
| 23741 |
\begin{align*}
x \left (x^{2}+a x y+y^{2}\right ) y^{\prime }&=\left (x^{2}+b x y+y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.478 |
|
| 23742 |
\begin{align*}
\left (\sinh \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.508 |
|
| 23743 |
\begin{align*}
y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.514 |
|
| 23744 |
\begin{align*}
\left (x -y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.526 |
|
| 23745 |
\begin{align*}
x^{2}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.540 |
|
| 23746 |
\begin{align*}
y^{\prime }&=\frac {-x +3 y-14}{x +y-2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.551 |
|
| 23747 |
\begin{align*}
y^{\prime }&=\frac {-3 t^{2}-2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.593 |
|
| 23748 |
\begin{align*}
y^{\prime }&=-\frac {1296 y}{216-648 x^{2} y+216 x^{2}-432 y x -882 y^{6}-216 x^{2} y^{4}-1296 y+216 x y^{2}-1944 y^{4}+1080 x y^{3}-570 y^{8}-648 y^{2} x^{2}+216 y^{7} x -1728 y^{3}+72 y^{8} x +216 x^{3}-2376 y^{2}-612 y^{5}-324 x^{2} y^{3}+594 x y^{6}+1080 x y^{5}+1152 y^{4} x -846 y^{7}-126 y^{10}-8 y^{12}-36 y^{11}-315 y^{9}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.604 |
|
| 23749 |
\begin{align*}
\left (5 x -7 y+1\right ) y^{\prime }+x +y-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.612 |
|
| 23750 |
\begin{align*}
y^{\prime }&=-\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.634 |
|
| 23751 |
\begin{align*}
y^{\prime } x +2&=x^{3} \left (y-1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.647 |
|
| 23752 |
\begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.648 |
|
| 23753 |
\begin{align*}
y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
12.663 |
|
| 23754 |
\begin{align*}
2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.672 |
|
| 23755 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.681 |
|
| 23756 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 y x +\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 y^{2} x^{2}}{4}-3 x y^{2}+\frac {3 x^{4} y}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.688 |
|
| 23757 | \begin{align*}
3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 12.698 |
|
| 23758 |
\begin{align*}
2 y^{\prime }-y \sec \left (x \right )&=y^{3} \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.713 |
|
| 23759 |
\begin{align*}
y^{\prime }&=\frac {x +y+4}{x +y-6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.714 |
|
| 23760 |
\begin{align*}
x^{\prime }&=x^{2}-t^{2} \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.723 |
|
| 23761 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{2} y^{3}+y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.730 |
|
| 23762 |
\begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.730 |
|
| 23763 |
\begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.736 |
|
| 23764 |
\begin{align*}
2 x -y+1+\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.754 |
|
| 23765 |
\begin{align*}
y^{\prime }&=\frac {x +y-1}{x -y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.757 |
|
| 23766 |
\begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.760 |
|
| 23767 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y^{2}+x^{2}}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.776 |
|
| 23768 |
\begin{align*}
-2+2 y+x^{2} \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.782 |
|
| 23769 |
\begin{align*}
3 y^{2}-x +\left (2 y^{3}-6 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.795 |
|
| 23770 |
\begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.800 |
|
| 23771 |
\begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x^{2}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.805 |
|
| 23772 |
\begin{align*}
2 x y^{\prime } y-y^{2}+a \,x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.813 |
|
| 23773 |
\begin{align*}
y^{2}+\left (x^{3}-2 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
12.815 |
|
| 23774 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y^{2}+x^{2}}-x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.815 |
|
| 23775 |
\begin{align*}
\left (T \ln \left (t \right )-1\right ) T&=t T^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.816 |
|
| 23776 | \begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} | ✓ | ✓ | ✗ | ✓ | 12.834 |
|
| 23777 |
\begin{align*}
y^{2}&=\left (t y-4 t^{2}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.836 |
|
| 23778 |
\begin{align*}
y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )^{3}+2 x^{3} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.839 |
|
| 23779 |
\begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
12.842 |
|
| 23780 |
\begin{align*}
y^{\prime }&=\sqrt {\frac {y}{t}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.843 |
|
| 23781 |
\begin{align*}
{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.845 |
|
| 23782 |
\begin{align*}
y \left (x -y-2\right )+x \left (-x +y+4\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.869 |
|
| 23783 |
\begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.873 |
|
| 23784 |
\begin{align*}
x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.885 |
|
| 23785 |
\begin{align*}
y&=2 y^{\prime } x +\ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.890 |
|
| 23786 |
\begin{align*}
y \left (x +y+1\right )+x \left (x +3 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.914 |
|
| 23787 |
\begin{align*}
y^{\prime } \left (1+{y^{\prime }}^{2}\right )+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.917 |
|
| 23788 |
\begin{align*}
y^{\prime }&=\frac {\left (x +y+1\right ) y}{\left (y^{4}+y^{3}+y^{2}+x \right ) \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.937 |
|
| 23789 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}-x y^{\prime } y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.940 |
|
| 23790 |
\begin{align*}
y^{\prime }&=\frac {2 x^{2} \cos \left (x \right )+2 x^{3} \sin \left (x \right )-2 x \sin \left (x \right )+2 x +2 y^{2} x^{2}-4 x \sin \left (x \right ) y+4 y \cos \left (x \right ) x^{2}+4 y x +3-\cos \left (2 x \right )-2 \sin \left (2 x \right ) x -4 \sin \left (x \right )+\cos \left (2 x \right ) x^{2}+x^{2}+4 \cos \left (x \right ) x}{2 x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.945 |
|
| 23791 |
\begin{align*}
S^{\prime }&=S^{3}-2 S^{2}+S \\
S \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
12.952 |
|
| 23792 |
\begin{align*}
y \left (8 x -9 y\right )+2 x \left (x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
12.954 |
|
| 23793 |
\begin{align*}
4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.971 |
|
| 23794 |
\begin{align*}
y^{\prime }&=-\frac {216 y}{-216 y^{4}-252 y^{3}-396 y^{2}-216 y+36 x^{2}-72 y x +60 y^{5}-36 x y^{3}-72 x y^{2}-24 y^{4} x +4 y^{8}+12 y^{7}+33 y^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
12.977 |
|
| 23795 | \begin{align*}
x -2 y-3+\left (2 x +y-1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 12.980 |
|
| 23796 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x -2 x^{2} f \left (x \right )\right ) y^{\prime }+\left (x^{2} \left (1+f \left (x \right )^{2}-f^{\prime }\left (x \right )\right )-f \left (x \right ) x -v^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
12.990 |
|
| 23797 |
\begin{align*}
y^{\prime }&=\frac {y-x +1}{3 x -y-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
13.011 |
|
| 23798 |
\begin{align*}
x \left (x^{2}-y x -y^{2}\right ) y^{\prime }&=\left (x^{2}+y x -y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
13.029 |
|
| 23799 |
\begin{align*}
\left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
13.033 |
|
| 23800 |
\begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y x -\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
13.039 |
|