| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23501 |
\begin{align*}
x y^{\prime } y&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.710 |
|
| 23502 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{y^{2}+y^{{3}/{2}}+\sqrt {y}\, x^{2}-2 y^{{3}/{2}} x +y^{{5}/{2}}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.711 |
|
| 23503 |
\begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.720 |
|
| 23504 |
\begin{align*}
\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.724 |
|
| 23505 |
\begin{align*}
x^{3} y+\left (3 x^{4}-y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.725 |
|
| 23506 |
\begin{align*}
y^{\prime }&=\frac {2 x}{x -y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.732 |
|
| 23507 |
\begin{align*}
\sin \left (y\right ) {y^{\prime }}^{2}+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4}&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
10.745 |
|
| 23508 |
\begin{align*}
y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
10.750 |
|
| 23509 |
\begin{align*}
\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.755 |
|
| 23510 |
\begin{align*}
\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.760 |
|
| 23511 |
\begin{align*}
3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.760 |
|
| 23512 |
\begin{align*}
\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.767 |
|
| 23513 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.779 |
|
| 23514 |
\begin{align*}
3 x^{2} y^{\prime }+2 x^{2}-3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.801 |
|
| 23515 |
\begin{align*}
\left (2 \sin \left (y\right )-x \right ) y^{\prime }&=\tan \left (y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.802 |
|
| 23516 |
\begin{align*}
y_{1}^{\prime }&=-3 y_{1}-3 y_{2}+y_{3} \\
y_{2}^{\prime }&=2 y_{2}+2 y_{3} \\
y_{3}^{\prime }&=5 y_{1}+y_{2}+y_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.803 |
|
| 23517 |
\begin{align*}
t^{2} x^{\prime }-2 t x&=t^{5} \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.804 |
|
| 23518 | \begin{align*}
y&=\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.806 |
|
| 23519 |
\begin{align*}
y^{\prime } x +y+x^{2} y^{5} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.838 |
|
| 23520 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
10.848 |
|
| 23521 |
\begin{align*}
x^{\prime }&=\frac {3 x^{2}-2 t^{2}}{t x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.858 |
|
| 23522 |
\begin{align*}
y^{\prime }&=\frac {2 y^{8}}{y^{5}+2 y^{6}+2 y^{2}+16 y^{4} x +32 y^{6} x^{2}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.876 |
|
| 23523 |
\begin{align*}
x^{\prime }&=-\frac {x+t +1}{x-t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.879 |
|
| 23524 |
\begin{align*}
x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.883 |
|
| 23525 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right )^{2}&=y^{2} y^{\prime \prime } \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= \sqrt {2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.884 |
|
| 23526 |
\begin{align*}
t^{2}+t y+y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.886 |
|
| 23527 |
\begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.889 |
|
| 23528 |
\begin{align*}
\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.890 |
|
| 23529 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.908 |
|
| 23530 |
\begin{align*}
y^{\prime } y+a \left (1-\frac {1}{x}\right ) y&=a^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.910 |
|
| 23531 |
\begin{align*}
y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right )&=y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.925 |
|
| 23532 |
\begin{align*}
y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.930 |
|
| 23533 |
\begin{align*}
-y+t y^{\prime }&=\sqrt {t y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.931 |
|
| 23534 |
\begin{align*}
2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.933 |
|
| 23535 |
\begin{align*}
\frac {y^{\prime }}{t}&=\sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.939 |
|
| 23536 |
\begin{align*}
{\mathrm e}^{x} x^{4}-2 m x y^{2}+2 m \,x^{2} y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.944 |
|
| 23537 | \begin{align*}
x -2 y^{3} y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.944 |
|
| 23538 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+3 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+3 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=2 x_{2}+2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.951 |
|
| 23539 |
\begin{align*}
y^{\prime }&=\frac {y \left (-3 x^{3} y-3+y^{2} x^{7}\right )}{x \left (x^{3} y+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.962 |
|
| 23540 |
\begin{align*}
y^{\prime }&=\frac {-3 x^{2} y-2 x^{3}-2 x -x y^{2}-y+x^{3} y^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x \left (x^{2}+y x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.965 |
|
| 23541 |
\begin{align*}
y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{0} +a_{1} y+a_{2} y^{2}+a_{3} y^{3}}\right )^{{2}/{3}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.973 |
|
| 23542 |
\begin{align*}
\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.974 |
|
| 23543 |
\begin{align*}
y^{\prime }&=\frac {\left (-256 a \,x^{2} y-32 a^{2} x^{6}-256 a \,x^{2}+512 y^{3}+192 x^{4} a y^{2}+24 y a^{2} x^{8}+a^{3} x^{12}\right ) x}{512 y+64 a \,x^{4}+512} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.991 |
|
| 23544 |
\begin{align*}
y^{\prime }&=y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.998 |
|
| 23545 |
\begin{align*}
y^{\prime }&=a \,x^{2 n +1} y^{3}+b \,x^{-n -2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.998 |
|
| 23546 |
\begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.016 |
|
| 23547 |
\begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.019 |
|
| 23548 |
\begin{align*}
y^{\prime }&=\frac {y^{{3}/{2}}}{y^{{3}/{2}}+x^{2}-2 y x +y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.041 |
|
| 23549 |
\begin{align*}
y^{\prime } y&=\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{-\lambda x}\right ) y+1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.042 |
|
| 23550 |
\begin{align*}
\left (1+x +9 y\right ) y^{\prime }+1+x +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.045 |
|
| 23551 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.050 |
|
| 23552 |
\begin{align*}
y^{\prime }&=t \sqrt {1-y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.058 |
|
| 23553 |
\begin{align*}
3 y^{\prime }+\frac {2 y}{x +1}&=\frac {x^{3}}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.072 |
|
| 23554 |
\begin{align*}
y^{\prime } y-a \left (1-\frac {b}{x}\right ) y&=a^{2} b \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.086 |
|
| 23555 |
\begin{align*}
y^{\prime }&=a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
11.097 |
|
| 23556 |
\begin{align*}
\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (a_{1} x +b_{1} \right ) y+a_{0} x +b_{0}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.099 |
|
| 23557 | \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 11.105 |
|
| 23558 |
\begin{align*}
y^{\prime }&=\frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x y^{3}+2 y^{4} x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.109 |
|
| 23559 |
\begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x^{3}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.109 |
|
| 23560 |
\begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.110 |
|
| 23561 |
\begin{align*}
y^{\prime }&=\sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.113 |
|
| 23562 |
\begin{align*}
y^{\prime } y+b y^{2}&=a \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.116 |
|
| 23563 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.119 |
|
| 23564 |
\begin{align*}
y^{m} x^{n} \left (a x y^{\prime }+b y\right )+\alpha x y^{\prime }+\beta y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.121 |
|
| 23565 |
\begin{align*}
y^{3}-x^{3}&=x y \left (y^{\prime } y+x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.127 |
|
| 23566 |
\begin{align*}
y^{\prime }&=\frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+b \,x^{4}+b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+a \,x^{2} y^{2}+a x y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.129 |
|
| 23567 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.143 |
|
| 23568 |
\begin{align*}
y^{\prime }&=\frac {2 y^{6}}{y^{3}+2+16 x y^{2}+32 x^{2} y^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.144 |
|
| 23569 |
\begin{align*}
2 y^{\prime } x -2 y&=\sqrt {x^{2}+4 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.149 |
|
| 23570 |
\begin{align*}
\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}}&=0 \\
y \left (1\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
11.149 |
|
| 23571 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.152 |
|
| 23572 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.156 |
|
| 23573 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
11.164 |
|
| 23574 |
\begin{align*}
\left (y x -x^{2}\right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.190 |
|
| 23575 |
\begin{align*}
y^{\prime }&=\frac {t +y+1}{t -y+3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.191 |
|
| 23576 | \begin{align*}
y^{\prime }&=a y^{2}+b \tan \left (x \right ) y+c \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 11.197 |
|
| 23577 |
\begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.197 |
|
| 23578 |
\begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.204 |
|
| 23579 |
\begin{align*}
y^{\prime }&=\frac {6 x -2 y-7}{2 x +3 y-6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.210 |
|
| 23580 |
\begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x +x^{3}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.213 |
|
| 23581 |
\begin{align*}
x -y+\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.215 |
|
| 23582 |
\begin{align*}
\left (x +1\right ) y^{\prime }-n y&={\mathrm e}^{x} \left (x +1\right )^{n +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.225 |
|
| 23583 |
\begin{align*}
y^{\prime }&=\frac {2 x^{2} y+x^{3}+x y \ln \left (x \right )-y^{2}-y x}{x^{2} \left (\ln \left (x \right )+x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.231 |
|
| 23584 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
11.249 |
|
| 23585 |
\begin{align*}
y^{\prime }-x^{a -1} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
11.251 |
|
| 23586 |
\begin{align*}
x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\
y \left (\infty \right ) &= \frac {16 \pi }{3} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
11.265 |
|
| 23587 |
\begin{align*}
y^{\prime }&=\sinh \left (\lambda x \right ) y^{2} a +b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.270 |
|
| 23588 |
\begin{align*}
3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3}&=a \,x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.274 |
|
| 23589 |
\begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {1-y^{2} x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.282 |
|
| 23590 |
\begin{align*}
y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.283 |
|
| 23591 |
\begin{align*}
x^{\prime \prime }+t^{2} x^{\prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.285 |
|
| 23592 |
\begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
11.288 |
|
| 23593 |
\begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x+2 z \\
z^{\prime }&=z-x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.303 |
|
| 23594 |
\begin{align*}
\left (3 y x -2 x^{2}\right ) y^{\prime }&=2 y^{2}-y x \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.307 |
|
| 23595 |
\begin{align*}
t y^{\prime }-y-\sqrt {t^{2}+y^{2}}&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.320 |
|
| 23596 | \begin{align*}
x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 11.325 |
|
| 23597 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{-\frac {2}{-y^{2}+x^{2}-1}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.334 |
|
| 23598 |
\begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
11.337 |
|
| 23599 |
\begin{align*}
y^{\prime }+\frac {y}{y^{2} x^{2}+x}&=\frac {x y^{2}}{y^{2} x^{2}+x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.349 |
|
| 23600 |
\begin{align*}
y^{\prime }&=\lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
11.353 |
|