| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23401 |
\begin{align*}
a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime }&=0 \\
y \left (a \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.022 |
|
| 23402 |
\begin{align*}
x y^{2}-y^{3}+\left (1-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.027 |
|
| 23403 |
\begin{align*}
y^{\prime } y&=\left (a -\frac {1}{a x}\right ) y+1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.029 |
|
| 23404 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.030 |
|
| 23405 |
\begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.046 |
|
| 23406 |
\begin{align*}
x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.059 |
|
| 23407 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.063 |
|
| 23408 |
\begin{align*}
\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.063 |
|
| 23409 |
\begin{align*}
3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.066 |
|
| 23410 |
\begin{align*}
y^{\prime }&=3 \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.072 |
|
| 23411 |
\begin{align*}
\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.072 |
|
| 23412 |
\begin{align*}
y^{\prime }&=\frac {-128 y x -24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 y^{2} x^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.078 |
|
| 23413 |
\begin{align*}
x \left (4+y\right ) y^{\prime }&=2 x +2 y+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.082 |
|
| 23414 |
\begin{align*}
y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.082 |
|
| 23415 |
\begin{align*}
x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.083 |
|
| 23416 |
\begin{align*}
y^{\prime }&=-\left (-\frac {\ln \left (y\right )}{x}+\frac {\ln \left (y\right )}{x \ln \left (x \right )}-\textit {\_F1} \left (x \right )\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.115 |
|
| 23417 |
\begin{align*}
4 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.116 |
|
| 23418 | \begin{align*}
x^{2} \left (a \,x^{n}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+\left (p \,x^{n}+q \right ) x y+r \,x^{n}+s&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 10.117 |
|
| 23419 |
\begin{align*}
\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.132 |
|
| 23420 |
\begin{align*}
y^{\prime }&=\frac {\left (x -y\right )^{3} \left (x +y\right )^{3} x}{\left (-y^{2}+x^{2}-1\right ) y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.132 |
|
| 23421 |
\begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.135 |
|
| 23422 |
\begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.136 |
|
| 23423 |
\begin{align*}
y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.138 |
|
| 23424 |
\begin{align*}
x \sin \left (y\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.140 |
|
| 23425 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.141 |
|
| 23426 |
\begin{align*}
y^{\prime }&=\frac {x y \ln \left (x \right )-y+2 x^{5} b +2 a \,x^{3} y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.147 |
|
| 23427 |
\begin{align*}
y^{\prime }&=\frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.148 |
|
| 23428 |
\begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.156 |
|
| 23429 |
\begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.156 |
|
| 23430 |
\begin{align*}
w^{\prime }&=3 w^{3}-12 w^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.159 |
|
| 23431 |
\begin{align*}
x -x y^{2}&=\left (x +x^{2} y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.161 |
|
| 23432 |
\begin{align*}
a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.167 |
|
| 23433 |
\begin{align*}
\left (c_{2} x^{2}+b_{2} x +a_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.168 |
|
| 23434 |
\begin{align*}
1+v^{2}+\left (u^{2}+1\right ) v v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.169 |
|
| 23435 |
\begin{align*}
y^{\prime } x&=y+\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.182 |
|
| 23436 |
\begin{align*}
y-\sqrt {y^{2}+x^{2}}-y^{\prime } x&=0 \\
y \left (\sqrt {3}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.205 |
|
| 23437 | \begin{align*}
x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.213 |
|
| 23438 |
\begin{align*}
\left (6-4 x -y\right ) y^{\prime }&=2 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.216 |
|
| 23439 |
\begin{align*}
2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.228 |
|
| 23440 |
\begin{align*}
\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime }&=\frac {T}{t \sqrt {t^{2}-T^{2}}}-t \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.238 |
|
| 23441 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y+y^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
10.247 |
|
| 23442 |
\begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
y \left (0\right ) &= {\frac {1}{5}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
10.250 |
|
| 23443 |
\begin{align*}
x y^{\prime } \sqrt {-a^{2}+x^{2}}&=y \sqrt {y^{2}-b^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.260 |
|
| 23444 |
\begin{align*}
y^{\prime }&=\frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.277 |
|
| 23445 |
\begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.277 |
|
| 23446 |
\begin{align*}
t^{2} y^{\prime }&=t y+y \sqrt {t^{2}+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.283 |
|
| 23447 |
\begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.292 |
|
| 23448 |
\begin{align*}
y^{\prime }&=-2 \left (2 x +3 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.306 |
|
| 23449 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.312 |
|
| 23450 |
\begin{align*}
y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.314 |
|
| 23451 |
\begin{align*}
y^{\prime } x +\frac {y^{2}}{x}&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.318 |
|
| 23452 |
\begin{align*}
y^{\prime }&=\frac {-30 x^{3} y+12 x^{6}+70 x^{{7}/{2}}-30 x^{3}-25 \sqrt {x}\, y+50 x -25 \sqrt {x}-25}{5 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.332 |
|
| 23453 |
\begin{align*}
y^{\prime }&=-\frac {3 t^{2}+2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.343 |
|
| 23454 |
\begin{align*}
\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}}&=\sin \left (x \right )^{3} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.355 |
|
| 23455 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.367 |
|
| 23456 |
\begin{align*}
y^{\prime }&=\frac {y}{x -y+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.381 |
|
| 23457 | \begin{align*}
x +2 y+\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.382 |
|
| 23458 |
\begin{align*}
y^{\prime }&=y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.401 |
|
| 23459 |
\begin{align*}
y^{\prime }&=\frac {x +3 y-5}{x -y-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.402 |
|
| 23460 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.436 |
|
| 23461 |
\begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.452 |
|
| 23462 |
\begin{align*}
y^{\prime }&=-F \left (x \right ) \left (y^{2}-2 y x -x^{2}\right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.454 |
|
| 23463 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda x \arctan \left (x \right )^{n} y+\arctan \left (x \right )^{n} \lambda \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.454 |
|
| 23464 |
\begin{align*}
x \left (y^{2}+x^{2}\right )^{2} \left (y-y^{\prime } x \right )+y^{6} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.457 |
|
| 23465 |
\begin{align*}
y^{\prime }&=-\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.464 |
|
| 23466 |
\begin{align*}
y^{\prime }&=k \left (a -y\right ) \left (b -y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.465 |
|
| 23467 |
\begin{align*}
2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.477 |
|
| 23468 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.480 |
|
| 23469 |
\begin{align*}
y^{\prime }&=\frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
10.490 |
|
| 23470 |
\begin{align*}
2 x^{2}+1&=\left (y^{5}-1\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.493 |
|
| 23471 |
\begin{align*}
2 x +y+\left (4 x +2 y+1\right ) y^{\prime }&=0 \\
y \left (-\frac {1}{6}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
10.509 |
|
| 23472 |
\begin{align*}
y^{\prime \prime }&=a^{2}+b^{2} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.513 |
|
| 23473 |
\begin{align*}
3 x +2 y+7+\left (2 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.514 |
|
| 23474 |
\begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.522 |
|
| 23475 |
\begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.528 |
|
| 23476 | \begin{align*}
y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.529 |
|
| 23477 |
\begin{align*}
y^{\prime }&=\frac {2 a \left (x y^{2}-4 a +x \right )}{-x^{3} y^{3}+4 a \,x^{2} y-x^{3} y+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.535 |
|
| 23478 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.545 |
|
| 23479 |
\begin{align*}
y^{\prime }&=\frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.546 |
|
| 23480 |
\begin{align*}
y^{\prime }&=\frac {x +\frac {y}{2}}{\frac {x}{2}-y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.549 |
|
| 23481 |
\begin{align*}
y^{\prime }&=\frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.549 |
|
| 23482 |
\begin{align*}
y x -\left (x^{2}+2 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.551 |
|
| 23483 |
\begin{align*}
x \left (2 x^{2}+y^{2}\right ) y^{\prime }&=\left (2 x^{2}+3 y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.568 |
|
| 23484 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}-2 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.573 |
|
| 23485 |
\begin{align*}
y^{\prime }&=\frac {14 y x +12+2 x +x^{3} y^{3}+6 y^{2} x^{2}}{x^{2} \left (y x +2+x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.576 |
|
| 23486 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.593 |
|
| 23487 |
\begin{align*}
y^{2} y^{\prime }+\tan \left (x \right ) y&=\sin \left (x \right )^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
10.604 |
|
| 23488 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.610 |
|
| 23489 |
\begin{align*}
y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.626 |
|
| 23490 |
\begin{align*}
y^{\prime }&=\frac {2 y^{3}+2 x^{2} y}{x^{3}+2 x y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.627 |
|
| 23491 |
\begin{align*}
2 y^{\prime \prime }&=y \left (a -y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.632 |
|
| 23492 |
\begin{align*}
y^{\prime }&=y^{2}+\lambda \arccos \left (x \right )^{n} y-a^{2}+a \lambda \arccos \left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.638 |
|
| 23493 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{\sqrt {x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.644 |
|
| 23494 |
\begin{align*}
y^{\prime }&=y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.646 |
|
| 23495 |
\begin{align*}
y^{\prime } x +y+3 x^{3} y^{4} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.654 |
|
| 23496 | \begin{align*}
y^{\prime } x&=y \left (1-2 y\right ) \\
y \left (1\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.683 |
|
| 23497 |
\begin{align*}
y^{\prime } y+x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.701 |
|
| 23498 |
\begin{align*}
y^{\prime }&=y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.704 |
|
| 23499 |
\begin{align*}
\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.707 |
|
| 23500 |
\begin{align*}
y^{\prime }&=\frac {a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.708 |
|