| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23301 |
\begin{align*}
x^{\prime }&=2 t x^{2} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.395 |
|
| 23302 |
\begin{align*}
y^{3}+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.399 |
|
| 23303 |
\begin{align*}
x +2 y+\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.403 |
|
| 23304 |
\begin{align*}
y^{\prime }&=\left (a \,x^{2 n}+b \,x^{n -1}\right ) y^{2}+c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.408 |
|
| 23305 |
\begin{align*}
y+\sqrt {y^{2}+x^{2}}-y^{\prime } x&=0 \\
y \left (\sqrt {3}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.408 |
|
| 23306 |
\begin{align*}
x^{\prime }&=-t^{2} x^{2} \\
x \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.409 |
|
| 23307 |
\begin{align*}
y^{\prime } x +6 y&=3 x y^{{4}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.424 |
|
| 23308 |
\begin{align*}
y^{\prime }&=x \left (a y^{2}+b \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.432 |
|
| 23309 |
\begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.444 |
|
| 23310 |
\begin{align*}
x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right ) x +f \left (x \right )^{2}-f \left (x \right )+a \,x^{2}+b x +c \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.446 |
|
| 23311 |
\begin{align*}
\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.449 |
|
| 23312 |
\begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.454 |
|
| 23313 |
\begin{align*}
y^{\prime }&=-\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.454 |
|
| 23314 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
9.474 |
|
| 23315 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.485 |
|
| 23316 |
\begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.499 |
|
| 23317 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} {\mathrm e}^{\lambda x} y-a \,{\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.502 |
|
| 23318 | \begin{align*}
y^{\prime }&=\frac {\sin \left (\frac {y}{x}\right ) \left (y+2 x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )\right )}{2 \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right )} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 9.509 |
|
| 23319 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}-y}{\tan \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.522 |
|
| 23320 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.528 |
|
| 23321 |
\begin{align*}
x^{3}+y^{2} \sqrt {y^{2}+x^{2}}-x y \sqrt {y^{2}+x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.530 |
|
| 23322 |
\begin{align*}
\left (y x -x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.531 |
|
| 23323 |
\begin{align*}
y^{\prime }&=\frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.539 |
|
| 23324 |
\begin{align*}
y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.540 |
|
| 23325 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x+x^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.540 |
|
| 23326 |
\begin{align*}
x +y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.540 |
|
| 23327 |
\begin{align*}
x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (n x +m \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
9.544 |
|
| 23328 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+\lambda f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.547 |
|
| 23329 |
\begin{align*}
\sin \left (x +y\right )-y^{\prime } y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.549 |
|
| 23330 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.554 |
|
| 23331 |
\begin{align*}
\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}}&=-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.562 |
|
| 23332 |
\begin{align*}
4 \left (-x -y+1\right ) y^{\prime }+2-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.579 |
|
| 23333 |
\begin{align*}
y^{\prime } y^{\prime \prime }&=x y^{2}+x^{2} y y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.580 |
|
| 23334 |
\begin{align*}
y^{\prime }&=\frac {y x -y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.589 |
|
| 23335 |
\begin{align*}
y^{\prime }&=-\frac {-y+x^{4} \sqrt {y^{2}+x^{2}}-x^{3} \sqrt {y^{2}+x^{2}}\, y}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.592 |
|
| 23336 |
\begin{align*}
\left (A y+B x +a \right ) y^{\prime }+B y+k x +b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.609 |
|
| 23337 |
\begin{align*}
x x^{\prime \prime }-2 {x^{\prime }}^{2}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.632 |
|
| 23338 | \begin{align*}
\left (a \ln \left (x \right )+b \right ) y^{\prime }&=y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 9.664 |
|
| 23339 |
\begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.674 |
|
| 23340 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.682 |
|
| 23341 |
\begin{align*}
y^{\prime } x&=a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.684 |
|
| 23342 |
\begin{align*}
y^{\prime } x +y&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.693 |
|
| 23343 |
\begin{align*}
y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.695 |
|
| 23344 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.710 |
|
| 23345 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.712 |
|
| 23346 |
\begin{align*}
x -y+3+\left (3 x +y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.713 |
|
| 23347 |
\begin{align*}
y^{\prime } y&=\frac {y}{\left (a x +b \right )^{2}}+1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.717 |
|
| 23348 |
\begin{align*}
y&=2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.721 |
|
| 23349 |
\begin{align*}
y^{\prime }&=\frac {-32 y x +16 x^{3}+16 x^{2}-32 x -64 y^{3}+48 y^{2} x^{2}+96 x y^{2}-12 x^{4} y-48 x^{3} y-48 x^{2} y+x^{6}+6 x^{5}+12 x^{4}}{-64 y+16 x^{2}+32 x -64} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.725 |
|
| 23350 |
\begin{align*}
2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.736 |
|
| 23351 |
\begin{align*}
x \sin \left (x^{2}\right )&=\frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.737 |
|
| 23352 |
\begin{align*}
y^{\prime }&=\frac {y^{4}+2 x y^{3}-3 y^{2} x^{2}-2 x^{3} y}{2 y^{2} x^{2}-2 x^{3} y-2 x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.738 |
|
| 23353 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
9.740 |
|
| 23354 |
\begin{align*}
y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (y^{2}-a^{2}+x^{2}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.743 |
|
| 23355 |
\begin{align*}
\left (2 \sqrt {y x}-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.751 |
|
| 23356 |
\begin{align*}
y^{\prime }&=\frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 a^{3} x +2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
9.753 |
|
| 23357 | \begin{align*}
y^{\prime }&=y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 9.769 |
|
| 23358 |
\begin{align*}
y^{\prime }&=\frac {3 x y}{2 x^{2}-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.771 |
|
| 23359 |
\begin{align*}
y^{\prime }&=\frac {x^{3} y^{3}+6 y^{2} x^{2}+12 y x +8+2 x}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.788 |
|
| 23360 |
\begin{align*}
y^{2} \left (y^{\prime } x +y\right ) \sqrt {x^{4}+1}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.792 |
|
| 23361 |
\begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.802 |
|
| 23362 |
\begin{align*}
y^{\prime }&=\frac {y+\ln \left (\left (x -1\right ) \left (x +1\right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (x +1\right )\right ) x y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.810 |
|
| 23363 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.820 |
|
| 23364 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.825 |
|
| 23365 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.827 |
|
| 23366 |
\begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime }&=y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.829 |
|
| 23367 |
\begin{align*}
\cos \left (x \right ) x +\left (1-6 y^{5}\right ) y^{\prime }&=0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.846 |
|
| 23368 |
\begin{align*}
y^{\prime }&=\frac {x^{3}+y^{4} x^{3}+2 y^{2} x^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.852 |
|
| 23369 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.869 |
|
| 23370 |
\begin{align*}
y^{\prime }&=\frac {y \ln \left (x -1\right )+x^{4}+x^{3}+y^{2} x^{2}+x y^{2}}{\ln \left (x -1\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.882 |
|
| 23371 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.883 |
|
| 23372 |
\begin{align*}
y^{\prime }&=\frac {t}{y^{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.886 |
|
| 23373 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.888 |
|
| 23374 |
\begin{align*}
y^{\prime }+\frac {\tan \left (x \right ) y}{2}&=2 y^{3} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.891 |
|
| 23375 |
\begin{align*}
x \left (x^{3}-2 y^{3}\right ) y^{\prime }&=\left (2 x^{3}-y^{3}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.891 |
|
| 23376 | \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x}}{{\mathrm e}^{-x} y+1} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 9.891 |
|
| 23377 |
\begin{align*}
y^{\prime }&=y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.894 |
|
| 23378 |
\begin{align*}
1+x y \left (x y^{2}+1\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
9.896 |
|
| 23379 |
\begin{align*}
y^{\prime }&=\frac {-32 a x y-8 a^{2} x^{3}-16 b \,x^{2} a -32 a x +64 y^{3}+48 a \,x^{2} y^{2}+96 b x y^{2}+12 a^{2} x^{4} y+48 y a \,x^{3} b +48 b^{2} x^{2} y+a^{3} x^{6}+6 a^{2} x^{5} b +12 a \,x^{4} b^{2}+8 b^{3} x^{3}}{64 y+16 a \,x^{2}+32 b x +64} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.901 |
|
| 23380 |
\begin{align*}
x \left (2 x +y\right ) y^{\prime }&=x^{2}+y x -y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.906 |
|
| 23381 |
\begin{align*}
b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.916 |
|
| 23382 |
\begin{align*}
y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.926 |
|
| 23383 |
\begin{align*}
x^{\prime \prime }+x+8 x^{7}&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
9.929 |
|
| 23384 |
\begin{align*}
y^{\prime }&=\sqrt {y x} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.936 |
|
| 23385 |
\begin{align*}
\left (x +1\right ) y^{\prime }+1&=2 \,{\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.941 |
|
| 23386 |
\begin{align*}
y^{\prime }+x \sin \left (2 y\right )&=2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.950 |
|
| 23387 |
\begin{align*}
y^{\prime }&=\frac {-32 y x -72 x^{3}+32 x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}-192 x y^{2}+12 x^{4} y-96 x^{3} y+192 x^{2} y+x^{6}-12 x^{5}+48 x^{4}}{64 y+16 x^{2}-64 x +64} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.956 |
|
| 23388 |
\begin{align*}
y^{\prime }&=\frac {x -y+\sqrt {y}}{x -y+\sqrt {y}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.963 |
|
| 23389 |
\begin{align*}
3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.967 |
|
| 23390 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.970 |
|
| 23391 |
\begin{align*}
\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
9.991 |
|
| 23392 |
\begin{align*}
y^{\prime }&=\frac {x^{4}+2 y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.992 |
|
| 23393 |
\begin{align*}
r^{\prime }&=\sqrt {r t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.996 |
|
| 23394 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.000 |
|
| 23395 | \begin{align*}
y^{\prime } x +6 y&=3 x y^{{4}/{3}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 10.001 |
|
| 23396 |
\begin{align*}
\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.004 |
|
| 23397 |
\begin{align*}
\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.005 |
|
| 23398 |
\begin{align*}
x {y^{\prime }}^{2}+\left (-3 x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.007 |
|
| 23399 |
\begin{align*}
y^{\prime }&=\frac {t +4 y}{4 t +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
10.013 |
|
| 23400 |
\begin{align*}
y^{\prime }&=\frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
10.017 |
|