| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23201 |
\begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.846 |
|
| 23202 |
\begin{align*}
\left (x y \sin \left (y x \right )+\cos \left (y x \right )\right ) y+\left (x y \sin \left (y x \right )-\cos \left (y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.851 |
|
| 23203 |
\begin{align*}
y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.852 |
|
| 23204 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a \,x^{n} f \left (x \right ) y+x^{n -1} a n \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
8.852 |
|
| 23205 |
\begin{align*}
y^{\prime }&=-F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.858 |
|
| 23206 |
\begin{align*}
\sqrt {-u^{2}+1}\, v^{\prime }&=2 u \sqrt {1-v^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.866 |
|
| 23207 |
\begin{align*}
3 x -2 y+1+\left (3 x -2 y+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.875 |
|
| 23208 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.879 |
|
| 23209 |
\begin{align*}
3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.901 |
|
| 23210 |
\begin{align*}
y^{\prime }&={\mathrm e}^{t}+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.908 |
|
| 23211 |
\begin{align*}
y^{2}+\left (x^{2}+3 y x +4 y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.912 |
|
| 23212 |
\begin{align*}
3 y^{2} y^{\prime } x -2 y^{3}&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.913 |
|
| 23213 |
\begin{align*}
2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right )&=\ln \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.924 |
|
| 23214 |
\begin{align*}
y^{\prime }&=\frac {x +1}{1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.927 |
|
| 23215 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.928 |
|
| 23216 |
\begin{align*}
x^{2}+y^{2}+1-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.928 |
|
| 23217 |
\begin{align*}
y^{\prime }&=\frac {y \ln \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.936 |
|
| 23218 | \begin{align*}
2 y+x \left (x^{2} \ln \left (y\right )-1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 8.950 |
|
| 23219 |
\begin{align*}
2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.951 |
|
| 23220 |
\begin{align*}
y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.954 |
|
| 23221 |
\begin{align*}
x^{\prime }&=\frac {t x}{t^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.955 |
|
| 23222 |
\begin{align*}
{\mathrm e}^{x}-\sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.963 |
|
| 23223 |
\begin{align*}
\sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= \frac {\sqrt {3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.968 |
|
| 23224 |
\begin{align*}
y^{\prime }&=\frac {x y \ln \left (x \right )+\ln \left (x \right ) x^{2}-2 y x -x^{2}-y^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x \left (-y+x \ln \left (x \right )-x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.978 |
|
| 23225 |
\begin{align*}
\left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.985 |
|
| 23226 |
\begin{align*}
y^{\prime }&=\frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.989 |
|
| 23227 |
\begin{align*}
y^{\prime }&=\left (1+y^{2} {\mathrm e}^{2 x^{2}}+y^{3} {\mathrm e}^{3 x^{2}}\right ) {\mathrm e}^{-x^{2}} x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.999 |
|
| 23228 |
\begin{align*}
\left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.005 |
|
| 23229 |
\begin{align*}
y^{\prime }&=-\frac {x \left ({\mathrm e}^{-3 x^{2}} x^{6}-6 \,{\mathrm e}^{-2 x^{2}} x^{4} y-2 \,{\mathrm e}^{-2 x^{2}} x^{4}+12 x^{2} {\mathrm e}^{-x^{2}} y^{2}+8 x^{2} {\mathrm e}^{-x^{2}} y+8 x^{2} {\mathrm e}^{-x^{2}}-8 y^{3}-8 y^{2}-8 \,{\mathrm e}^{-x^{2}}-8\right )}{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.009 |
|
| 23230 |
\begin{align*}
y^{\prime }&=\frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.010 |
|
| 23231 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.012 |
|
| 23232 |
\begin{align*}
y^{\prime }&=-\frac {-y+x^{3} \sqrt {y^{2}+x^{2}}-x^{2} \sqrt {y^{2}+x^{2}}\, y}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.014 |
|
| 23233 |
\begin{align*}
y^{\prime }&=\frac {x^{3}+x^{2} y-y^{3}}{x^{3}-x y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.015 |
|
| 23234 |
\begin{align*}
\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.021 |
|
| 23235 |
\begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.033 |
|
| 23236 |
\begin{align*}
y^{\prime } x&=y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.040 |
|
| 23237 | \begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 9.059 |
|
| 23238 |
\begin{align*}
\left (3+2 x +4 y\right ) y^{\prime }&=x +2 y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.068 |
|
| 23239 |
\begin{align*}
y^{\prime }&=\frac {\left (y-a \ln \left (y\right ) x +x^{2}\right ) y}{\left (-y \ln \left (y\right )-y \ln \left (x \right )-y+a x \right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.073 |
|
| 23240 |
\begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.085 |
|
| 23241 |
\begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.092 |
|
| 23242 |
\begin{align*}
y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.093 |
|
| 23243 |
\begin{align*}
x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.098 |
|
| 23244 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=1-y x -3 x^{2}+2 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.106 |
|
| 23245 |
\begin{align*}
y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.111 |
|
| 23246 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x -1\right )^{2} {\mathrm e}^{x} \\
y \left (-\infty \right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
9.113 |
|
| 23247 |
\begin{align*}
2 x -2 y+\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.116 |
|
| 23248 |
\begin{align*}
y^{\prime }&=\left (x -y+3\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.120 |
|
| 23249 |
\begin{align*}
\left (3+2 \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime }&=1+2 \sin \left (y\right )+\cos \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.128 |
|
| 23250 |
\begin{align*}
y^{\prime }&=\frac {2 x +5 y}{2 x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.132 |
|
| 23251 |
\begin{align*}
y^{\prime }&=-\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.136 |
|
| 23252 |
\begin{align*}
y^{\prime }&=\frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 y x +4 x^{4}-3 x^{3}+y^{3}+3 y^{2} x^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.148 |
|
| 23253 |
\begin{align*}
y^{\prime }&=-\frac {x}{4 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.153 |
|
| 23254 |
\begin{align*}
y^{\prime }&=-\frac {4 x -2 y}{2 x -3 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.161 |
|
| 23255 |
\begin{align*}
y^{\prime }&=\frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.167 |
|
| 23256 |
\begin{align*}
\left (a^{2} x^{2}+\left (y^{2}+x^{2}\right )^{2}\right ) y^{\prime }&=a^{2} x y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.170 |
|
| 23257 | \begin{align*}
y y^{\prime \prime }&=c y^{2}+b y y^{\prime }+a {y^{\prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 9.172 |
|
| 23258 |
\begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.172 |
|
| 23259 |
\begin{align*}
y^{\prime }&=a \,x^{\frac {n}{1-n}}+b y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.194 |
|
| 23260 |
\begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.195 |
|
| 23261 |
\begin{align*}
y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.201 |
|
| 23262 |
\begin{align*}
y^{\prime }-2 \,{\mathrm e}^{x} y&=2 \sqrt {{\mathrm e}^{x} y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.202 |
|
| 23263 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.207 |
|
| 23264 |
\begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.211 |
|
| 23265 |
\begin{align*}
3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.212 |
|
| 23266 |
\begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.218 |
|
| 23267 |
\begin{align*}
y^{\prime }&=4 \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.221 |
|
| 23268 |
\begin{align*}
y^{\prime }&=\frac {6 x^{2}-5 y x -2 y^{2}}{6 x^{2}-8 y x +y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.227 |
|
| 23269 |
\begin{align*}
T^{\prime }&=2 a t \left (T^{2}-a^{2}\right ) \\
T \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.231 |
|
| 23270 |
\begin{align*}
y^{\prime }&=\frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-y^{2} x^{2}-x y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.237 |
|
| 23271 |
\begin{align*}
y^{\prime }&=y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.251 |
|
| 23272 |
\begin{align*}
y^{\prime }&=\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.266 |
|
| 23273 |
\begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.266 |
|
| 23274 |
\begin{align*}
x \left (3 \,{\mathrm e}^{y x}+2 \,{\mathrm e}^{-y x}\right ) \left (y^{\prime } x +y\right )+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.269 |
|
| 23275 |
\begin{align*}
y^{\prime }&=-\left (-\frac {\ln \left (y\right )}{x}+\frac {\cos \left (x \right ) \ln \left (y\right )}{\sin \left (x \right )}-\textit {\_F1} \left (x \right )\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.270 |
|
| 23276 |
\begin{align*}
\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.279 |
|
| 23277 | \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 9.281 |
|
| 23278 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.288 |
|
| 23279 |
\begin{align*}
x^{n} y^{\prime }&=a^{2} x^{2 n -2}+b^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.289 |
|
| 23280 |
\begin{align*}
y^{\prime }&=\frac {-32 y x -8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}+96 a x y^{2}+12 x^{4} y+48 y a \,x^{3}+48 y a^{2} x^{2}+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.295 |
|
| 23281 |
\begin{align*}
y^{\prime }&=\frac {1}{-x +\left (\frac {1}{y}+1\right ) x +\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2}-\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2} \left (\frac {1}{y}+1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.303 |
|
| 23282 |
\begin{align*}
y^{\prime } x&=a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.308 |
|
| 23283 |
\begin{align*}
y-x y^{2}+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.313 |
|
| 23284 |
\begin{align*}
y^{\prime }&=\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.316 |
|
| 23285 |
\begin{align*}
y^{\prime }&=-\frac {\left (-\frac {y \,{\mathrm e}^{\frac {1}{x}}}{x}-\textit {\_F1} \left (y \,{\mathrm e}^{\frac {1}{x}}\right )\right ) {\mathrm e}^{-\frac {1}{x}}}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.334 |
|
| 23286 |
\begin{align*}
y^{\prime }&=\frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.340 |
|
| 23287 |
\begin{align*}
2 \ln \left (x \right ) y^{\prime }+\frac {y}{x}&=\frac {\cos \left (x \right )}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.340 |
|
| 23288 |
\begin{align*}
y^{\prime }&=-\frac {\left (-1-y^{4}+2 y^{2} x^{2}-x^{4}-y^{6}+3 x^{2} y^{4}-3 x^{4} y^{2}+x^{6}\right ) x}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
9.345 |
|
| 23289 |
\begin{align*}
2 x y^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.345 |
|
| 23290 |
\begin{align*}
\left (2 x +y\right ) y^{\prime }+x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.345 |
|
| 23291 |
\begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.348 |
|
| 23292 |
\begin{align*}
y^{\prime } x -a y&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.352 |
|
| 23293 |
\begin{align*}
y^{\prime }&=\frac {-{\mathrm e}^{x} y+y x -x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (x -{\mathrm e}^{x}\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.355 |
|
| 23294 |
\begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.356 |
|
| 23295 |
\begin{align*}
x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=\left (2 x^{3}-x^{2} y+y^{3}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.360 |
|
| 23296 | \begin{align*}
y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 9.382 |
|
| 23297 |
\begin{align*}
\left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{-2+n}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
9.385 |
|
| 23298 |
\begin{align*}
y&=x +a \arctan \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.392 |
|
| 23299 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
9.395 |
|
| 23300 |
\begin{align*}
y^{\prime }&=\frac {32 x^{5} y+8 x^{3}+32 x^{5}+64 x^{6} y^{3}+48 x^{4} y^{2}+12 x^{2} y+1}{16 x^{6} \left (4 x^{2} y+1+4 x^{2}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
9.395 |
|