| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 23101 |
\begin{align*}
\left (y x +a \right ) y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.383 |
|
| 23102 |
\begin{align*}
y&=y^{\prime } x +a y^{\prime }+b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.400 |
|
| 23103 |
\begin{align*}
y^{\prime }&=a x +b \sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.402 |
|
| 23104 |
\begin{align*}
x^{4} y^{\prime }&=-x^{4} y^{2}-a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.403 |
|
| 23105 |
\begin{align*}
2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.408 |
|
| 23106 |
\begin{align*}
y^{\prime }&=-\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 a \,x^{2} y^{2}}{4}+\frac {3 b x y^{2}}{2}+\frac {3 a^{2} x^{4} y}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 b^{2} x^{2} y}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 a \,x^{4} b^{2}}{16}+\frac {b^{3} x^{3}}{8} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.408 |
|
| 23107 |
\begin{align*}
3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
8.410 |
|
| 23108 |
\begin{align*}
y^{\prime }&=\frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.437 |
|
| 23109 |
\begin{align*}
x^{\prime }&=x^{2}-3 x+2 \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.438 |
|
| 23110 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.439 |
|
| 23111 |
\begin{align*}
y^{\prime \prime }&=\frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.440 |
|
| 23112 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.441 |
|
| 23113 |
\begin{align*}
x^{3}+y^{3}+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.441 |
|
| 23114 |
\begin{align*}
y^{2} \left (x^{2}+1\right )+y+\left (2 y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.448 |
|
| 23115 |
\begin{align*}
v^{\prime }&=g -\frac {k v^{2}}{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.451 |
|
| 23116 |
\begin{align*}
y^{\prime } x -x \left (y-x \right ) \sqrt {y^{2}+x^{2}}-y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.456 |
|
| 23117 |
\begin{align*}
y^{\prime }&=y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.477 |
|
| 23118 | \begin{align*}
v \left (3 x +2 v\right )-x^{2} v^{\prime }&=0 \\
v \left (1\right ) &= 2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 8.479 |
|
| 23119 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.480 |
|
| 23120 |
\begin{align*}
y-3 x +\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.490 |
|
| 23121 |
\begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.497 |
|
| 23122 |
\begin{align*}
y^{\prime } y+\frac {a \left (1-\frac {b}{x^{2}}\right ) y}{x}&=\frac {a^{2} b}{x} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.503 |
|
| 23123 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }-a^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.508 |
|
| 23124 |
\begin{align*}
x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x +\left (x^{3}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
8.515 |
|
| 23125 |
\begin{align*}
\left (x -y\right ) y^{\prime }&=\left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.522 |
|
| 23126 |
\begin{align*}
y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.531 |
|
| 23127 |
\begin{align*}
\left (2 a^{2}-r^{2}\right ) r^{\prime }&=r^{3} \sin \left (\theta \right ) \\
r \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
8.532 |
|
| 23128 |
\begin{align*}
x^{2} \left (x^{2}+a \right ) \left (y^{\prime }+\lambda y^{2}\right )+x \left (b \,x^{2}+c \right ) y+s&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.533 |
|
| 23129 |
\begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.538 |
|
| 23130 |
\begin{align*}
\left (x^{2}-y^{5}\right ) y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.541 |
|
| 23131 |
\begin{align*}
y^{3}-t^{3}-t y^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.552 |
|
| 23132 |
\begin{align*}
y^{\prime }&=\frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.556 |
|
| 23133 |
\begin{align*}
y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.558 |
|
| 23134 |
\begin{align*}
\sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= -\frac {\sqrt {3}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.558 |
|
| 23135 |
\begin{align*}
y^{\prime }&=\cot \left (x \right ) \left (\sqrt {y}-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.562 |
|
| 23136 |
\begin{align*}
y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.562 |
|
| 23137 |
\begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.567 |
|
| 23138 | \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 8.579 |
|
| 23139 |
\begin{align*}
y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.580 |
|
| 23140 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-3 t y^{\prime }+4 y&=\sin \left (t \right ) \\
y \left (-2\right ) &= 2 \\
y^{\prime }\left (-2\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.585 |
|
| 23141 |
\begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.585 |
|
| 23142 |
\begin{align*}
\left (y-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.586 |
|
| 23143 |
\begin{align*}
\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.587 |
|
| 23144 |
\begin{align*}
\left (x^{3}-y^{4}\right ) y^{\prime }&=3 x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.595 |
|
| 23145 |
\begin{align*}
x \left (x -y^{3}\right ) y^{\prime }&=\left (3 x +y^{3}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.596 |
|
| 23146 |
\begin{align*}
y^{\prime }&=\frac {-18 y x -6 x^{3}-18 x +27 y^{3}+27 y^{2} x^{2}+9 x^{4} y+x^{6}}{27 y+9 x^{2}+27} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.611 |
|
| 23147 |
\begin{align*}
3 y^{\prime } y+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.619 |
|
| 23148 |
\begin{align*}
y-y^{\prime } x&=x y^{3} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.619 |
|
| 23149 |
\begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.624 |
|
| 23150 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.626 |
|
| 23151 |
\begin{align*}
x \cos \left (y\right ) y^{\prime }+\sin \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.626 |
|
| 23152 |
\begin{align*}
-y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
8.627 |
|
| 23153 |
\begin{align*}
y^{\prime }&=-\frac {x \left (-513-432 x -576 x^{5}-594 x^{2} y-1134 x^{2}-972 x^{4} y^{2}-378 y+864 x^{5} y^{2}-864 x^{4}-216 x^{4} y-456 x^{6}+288 x^{7} y-144 x^{7}+720 x^{3} y-96 x^{8}-1296 y^{2} x^{2}-216 y^{3}-288 x^{6} y-216 x^{6} y^{3}-288 y x^{8}-756 x^{3}+432 x^{3} y^{2}-540 y^{2}-648 x^{2} y^{3}+1008 x^{5} y+64 x^{9}-648 y^{3} x^{4}-216 x^{6} y^{2}+432 y^{2} x^{7}\right )}{216 \left (x^{2}+1\right )^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.628 |
|
| 23154 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.634 |
|
| 23155 |
\begin{align*}
y^{3} \sec \left (x \right )^{2}-\left (1-2 \tan \left (x \right ) y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.634 |
|
| 23156 |
\begin{align*}
\left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.636 |
|
| 23157 | \begin{align*}
x y^{\prime } y&=\sqrt {y^{2}-9} \\
y \left ({\mathrm e}^{4}\right ) &= 5 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 8.641 |
|
| 23158 |
\begin{align*}
y^{\prime }+t^{2}&=y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.667 |
|
| 23159 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }&=x^{2}-2 y x +5 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.687 |
|
| 23160 |
\begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.697 |
|
| 23161 |
\begin{align*}
y^{\prime }&=\frac {\left (x y^{2}+1\right )^{3}}{x^{4} \left (x y^{2}+1+x \right ) y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.704 |
|
| 23162 |
\begin{align*}
\sec \left (x \right ) \cos \left (y\right )^{2}&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.708 |
|
| 23163 |
\begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.708 |
|
| 23164 |
\begin{align*}
y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}&=\sqrt {b_{0} +b_{1} y+b_{2} y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.710 |
|
| 23165 |
\begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.710 |
|
| 23166 |
\begin{align*}
2 y-8 x^{2}+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.724 |
|
| 23167 |
\begin{align*}
y^{\prime }+\frac {y \left (x +y\right )}{x +2 y-1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.724 |
|
| 23168 |
\begin{align*}
y^{\prime }&=\frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.726 |
|
| 23169 |
\begin{align*}
\left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.729 |
|
| 23170 |
\begin{align*}
\left (x^{2}+y x +a \right ) y^{\prime }&=y^{2}+y x +b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.730 |
|
| 23171 |
\begin{align*}
x -y+1+\left (2 y-2 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.732 |
|
| 23172 |
\begin{align*}
x^{\prime }&=\frac {t}{x} \\
x \left (\sqrt {2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.734 |
|
| 23173 |
\begin{align*}
x \csc \left (\frac {y}{x}\right )-y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.738 |
|
| 23174 |
\begin{align*}
\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.740 |
|
| 23175 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.754 |
|
| 23176 | \begin{align*}
\left (a \,x^{n}+b \right ) y^{\prime }&=b y^{2}+a \,x^{-2+n} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 8.760 |
|
| 23177 |
\begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.763 |
|
| 23178 |
\begin{align*}
y^{\prime }&=\frac {\left (y x +1\right ) \left (y^{2} x^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.763 |
|
| 23179 |
\begin{align*}
\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.766 |
|
| 23180 |
\begin{align*}
y^{\prime }&=3 x \left (y-1\right )^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.767 |
|
| 23181 |
\begin{align*}
\left (1+y^{2}\right ) \cos \left (x \right )&=2 \left (1+\sin \left (x \right )^{2}\right ) y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.767 |
|
| 23182 |
\begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.772 |
|
| 23183 |
\begin{align*}
y^{\prime }&=3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.778 |
|
| 23184 |
\begin{align*}
y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2}&=r \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.796 |
|
| 23185 |
\begin{align*}
y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.797 |
|
| 23186 |
\begin{align*}
x^{3}+y^{3}&=3 y^{2} y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.801 |
|
| 23187 |
\begin{align*}
y^{\prime }&=\frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
8.806 |
|
| 23188 |
\begin{align*}
x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.809 |
|
| 23189 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{\sin \left (x \right )} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
8.823 |
|
| 23190 |
\begin{align*}
\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.823 |
|
| 23191 |
\begin{align*}
y^{\prime }+y x&=x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.828 |
|
| 23192 |
\begin{align*}
y^{\prime }&=-\frac {x}{4}+1+y^{2}+\frac {7 x^{2} y}{16}-\frac {y x}{2}+\frac {5 x^{4}}{128}-\frac {5 x^{3}}{64}+\frac {x^{2}}{16}+y^{3}+\frac {3 y^{2} x^{2}}{8}-\frac {3 x y^{2}}{4}+\frac {3 x^{4} y}{64}-\frac {3 x^{3} y}{16}+\frac {x^{6}}{512}-\frac {3 x^{5}}{256} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.829 |
|
| 23193 |
\begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.830 |
|
| 23194 |
\begin{align*}
x^{\prime }&=k \left (a -x\right ) \left (b -x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.831 |
|
| 23195 |
\begin{align*}
y&=\sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.832 |
|
| 23196 | \begin{align*}
v^{\prime }+\frac {2 v}{u}&=3 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 8.835 |
|
| 23197 |
\begin{align*}
y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 y^{2} x^{2}+7 x y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.836 |
|
| 23198 |
\begin{align*}
y^{\prime }&=1-y+y^{2} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
8.840 |
|
| 23199 |
\begin{align*}
y^{\prime }&=\frac {-2 y x +2 x^{3}-2 x -y^{3}+3 y^{2} x^{2}-3 x^{4} y+x^{6}}{-y+x^{2}-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.842 |
|
| 23200 |
\begin{align*}
\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
8.843 |
|