| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 22801 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
7.213 |
|
| 22802 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {t}}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.215 |
|
| 22803 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.223 |
|
| 22804 |
\begin{align*}
\left (1-x^{4} y^{2}\right ) y^{\prime }&=x^{3} y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.224 |
|
| 22805 |
\begin{align*}
y^{\prime }+q \left (x \right ) y&=0 \\
y \left (\textit {x\_0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.226 |
|
| 22806 |
\begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.231 |
|
| 22807 |
\begin{align*}
2 y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.232 |
|
| 22808 |
\begin{align*}
\left (x \left (x +y\right )+a^{2}\right ) y^{\prime }&=y \left (x +y\right )+b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.234 |
|
| 22809 |
\begin{align*}
y^{\prime }&=\frac {y \left (1+y\right )}{x \left (-y-1+y^{4} x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.238 |
|
| 22810 |
\begin{align*}
y^{\prime }&=\sin \left (y\right )^{3} \cos \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.239 |
|
| 22811 |
\begin{align*}
x +2 y+\left (2 x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.242 |
|
| 22812 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
7.242 |
|
| 22813 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{4}\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.242 |
|
| 22814 |
\begin{align*}
y^{\prime } x&=a \,x^{n +2} y^{3}+\left (b \,x^{n}-1\right ) y+c \,x^{n -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.243 |
|
| 22815 |
\begin{align*}
R^{\prime }&=\left (t +1\right ) \left (1+R^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.244 |
|
| 22816 |
\begin{align*}
y \left (2 y x +1\right )+x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.259 |
|
| 22817 |
\begin{align*}
y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.259 |
|
| 22818 | \begin{align*}
\left (t -\sqrt {t y}\right ) y^{\prime }&=y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 7.260 |
|
| 22819 |
\begin{align*}
a \,x^{2} y^{n} y^{\prime }-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.263 |
|
| 22820 |
\begin{align*}
3 t^{2} y^{\prime \prime }+2 t y^{\prime }+y&={\mathrm e}^{2 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.269 |
|
| 22821 |
\begin{align*}
x^{4} y^{\prime }+a^{2}+x^{4} y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.272 |
|
| 22822 |
\begin{align*}
\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.278 |
|
| 22823 |
\begin{align*}
y^{\prime } x&=f \left (x \right ) y^{2}+n y+a \,x^{2 n} f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.282 |
|
| 22824 |
\begin{align*}
x y^{\prime } y&=x^{2}+y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.285 |
|
| 22825 |
\begin{align*}
y^{\prime }&=\sin \left (x -y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.287 |
|
| 22826 |
\begin{align*}
\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.289 |
|
| 22827 |
\begin{align*}
\left (x^{2}-y^{4}\right ) y^{\prime }&=y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.290 |
|
| 22828 |
\begin{align*}
y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.294 |
|
| 22829 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.295 |
|
| 22830 |
\begin{align*}
y^{\prime } x -5 y-x \sqrt {y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.300 |
|
| 22831 |
\begin{align*}
y^{\prime }&=\frac {4 x \left (a -1\right ) \left (a +1\right )}{4 y+y^{4} a^{2}-2 a^{4} y^{2} x^{2}+4 y^{2} a^{2} x^{2}+a^{6} x^{4}-3 a^{4} x^{4}+3 a^{2} x^{4}-y^{4}-2 y^{2} x^{2}-x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.304 |
|
| 22832 |
\begin{align*}
1&=b \left (\cos \left (y\right )+x \sin \left (y\right ) y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.310 |
|
| 22833 |
\begin{align*}
y^{\prime }-\left (A y-a \right ) \left (B y-b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.311 |
|
| 22834 |
\begin{align*}
y^{\prime }&=\frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.312 |
|
| 22835 |
\begin{align*}
\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.320 |
|
| 22836 |
\begin{align*}
x y^{2}+{\mathrm e}^{x} y^{\prime }&=0 \\
y \left (\infty \right ) &= {\frac {1}{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.322 |
|
| 22837 | \begin{align*}
y^{\prime }&=\frac {2 x y}{3 x^{2}-y^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 7.325 |
|
| 22838 |
\begin{align*}
y^{\prime }&=\frac {2 t y^{2}}{t^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.325 |
|
| 22839 |
\begin{align*}
y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.326 |
|
| 22840 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.332 |
|
| 22841 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.336 |
|
| 22842 |
\begin{align*}
\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.340 |
|
| 22843 |
\begin{align*}
{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.348 |
|
| 22844 |
\begin{align*}
y^{\prime } y-y&=a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
7.352 |
|
| 22845 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
7.356 |
|
| 22846 |
\begin{align*}
y^{\prime }&=\frac {x}{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.357 |
|
| 22847 |
\begin{align*}
2 t x x^{\prime }+t^{2}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.367 |
|
| 22848 |
\begin{align*}
\left (y x +1\right ) y&=y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.368 |
|
| 22849 |
\begin{align*}
y^{\prime }&=\frac {-x +1-2 y+3 x^{2}-2 x^{2} y+2 x^{4}+x^{3}-2 x^{3} y+2 x^{5}}{x^{2}-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.385 |
|
| 22850 |
\begin{align*}
y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.387 |
|
| 22851 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.387 |
|
| 22852 |
\begin{align*}
v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.390 |
|
| 22853 |
\begin{align*}
y^{\prime }-\frac {4 t y}{4 t^{2}-9}&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.391 |
|
| 22854 |
\begin{align*}
y^{\prime }&=\frac {t -y}{2 t +5 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.395 |
|
| 22855 |
\begin{align*}
2 x -3 y+1-\left (3 x +2 y-4\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.396 |
|
| 22856 |
\begin{align*}
y^{\prime }&=\left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.398 |
|
| 22857 | \begin{align*}
x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 7.401 |
|
| 22858 |
\begin{align*}
y \left (2-3 y x \right )-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.410 |
|
| 22859 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
7.415 |
|
| 22860 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{3}+3 a b \,x^{n +m} y^{2}-b m \,x^{m -1}-2 a \,b^{3} x^{n +3 m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.417 |
|
| 22861 |
\begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.417 |
|
| 22862 |
\begin{align*}
y^{\prime }&=\frac {4 x -3 y-17}{3 x +y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.420 |
|
| 22863 |
\begin{align*}
y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.421 |
|
| 22864 |
\begin{align*}
-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.421 |
|
| 22865 |
\begin{align*}
y^{2}-x^{2}+x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.424 |
|
| 22866 |
\begin{align*}
y^{\prime }&=-\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.425 |
|
| 22867 |
\begin{align*}
y^{\prime \prime }&=a^{2}+k^{2} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.435 |
|
| 22868 |
\begin{align*}
2 y&=3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.436 |
|
| 22869 |
\begin{align*}
y^{\prime }&=3 x \left (y-1\right )^{{1}/{3}} \\
y \left (0\right ) &= 9 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.437 |
|
| 22870 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=0 \\
y \left (-1\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.443 |
|
| 22871 |
\begin{align*}
y^{\prime }&=\frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.451 |
|
| 22872 |
\begin{align*}
y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.452 |
|
| 22873 |
\begin{align*}
\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.463 |
|
| 22874 |
\begin{align*}
\left (A x y+B \,x^{2}+\left (-1+k \right ) A a y-\left (A b k +B a \right ) x \right ) y^{\prime }&=A y^{2}+B y x -\left (B a k +A b \right ) y+\left (-1+k \right ) B b x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.464 |
|
| 22875 |
\begin{align*}
y^{\prime }&=\frac {x -2 y}{y-2 x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
7.465 |
|
| 22876 | \begin{align*}
\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 7.471 |
|
| 22877 |
\begin{align*}
{y^{\prime }}^{2}-y^{3}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.473 |
|
| 22878 |
\begin{align*}
\left (-\sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y&=\left (-\sin \left (x \right )+\cos \left (x \right )\right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.480 |
|
| 22879 |
\begin{align*}
\left (x \sin \left (y x \right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (y x \right )+\cos \left (x +y\right )+\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.480 |
|
| 22880 |
\begin{align*}
y^{\prime }&=\frac {4 x \left (a -1\right ) \left (a +1\right ) \left (-y^{2}+a^{2} x^{2}-x^{2}-2\right )}{-4 y^{3}+4 y a^{2} x^{2}-4 x^{2} y-8 y-y^{6} a^{2}+3 a^{4} y^{4} x^{2}-6 y^{4} a^{2} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-4 a^{2} x^{6}+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.486 |
|
| 22881 |
\begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.489 |
|
| 22882 |
\begin{align*}
\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.491 |
|
| 22883 |
\begin{align*}
x -2 y+3&=\left (x -2 y+1\right ) y^{\prime } \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.493 |
|
| 22884 |
\begin{align*}
\left (x^{2}+x +1\right ) y^{\prime }&=y^{2}+2 y+5 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.496 |
|
| 22885 |
\begin{align*}
a t +b y-\left (c t +d y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
7.496 |
|
| 22886 |
\begin{align*}
x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.497 |
|
| 22887 |
\begin{align*}
-y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
7.498 |
|
| 22888 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.499 |
|
| 22889 |
\begin{align*}
y^{\prime }&=\tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
7.500 |
|
| 22890 |
\begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.502 |
|
| 22891 |
\begin{align*}
y^{\prime }&=\frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.505 |
|
| 22892 |
\begin{align*}
y+x \left (3 y x -2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.511 |
|
| 22893 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
7.513 |
|
| 22894 |
\begin{align*}
y^{\prime }&=-y^{3}+\left (a x +b \right ) y^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
7.514 |
|
| 22895 | \begin{align*}
y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 7.526 |
|
| 22896 |
\begin{align*}
x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.528 |
|
| 22897 |
\begin{align*}
\cos \left (x +y\right )&=x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.529 |
|
| 22898 |
\begin{align*}
y^{\prime }&=3 \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.533 |
|
| 22899 |
\begin{align*}
y^{\prime }&=y-x y^{3} {\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.534 |
|
| 22900 |
\begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
7.537 |
|